forked from amjadseyedi/EADNMF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobust.py
32 lines (27 loc) · 1.1 KB
/
robust.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
import numpy as np
def robust(M, R, main, reg, l_r, para, type):
if main == 'F':
D1 = torch.ones(M.shape[1]).type(type)
elif main == '21':
D1 = 1/torch.norm(M, dim=0)
elif main == 'co':
D1 = torch.exp(-(torch.norm(M, dim=0)**2)/(2*(para**2)))
elif main == 'el':
D1 = (1+para)*(torch.norm(M, dim=0)+2*para) / torch.maximum(2*(torch.norm(M, dim=0)+para)**2, torch.tensor(1e-10))
if reg == 'F':
D2 = torch.ones(R.shape[1]).type(type)
elif reg == '21':
D2 = 1/torch.norm(R, dim=0)
C = torch.diag(D1/(l_r * D2 - D1))
return C
def calcD(M, main, para, type):
if main == 'F': # D matrix for Square error NMF
d = torch.ones(M.shape[1]).type(type)
elif main == '21': # D matrix for NMF-2,1
d = 1/torch.norm(M, dim=0)
elif main == 'co': # D matrix for Correntropy NMF
d = torch.exp(-(torch.norm(M, dim=0)**2)/(2*(para**2)))
elif main == 'el': # D matrix for Elastic NMF
d = (1+para)*(torch.norm(M, dim=0)+2*para)/(2*(torch.norm(M, dim=0)+para)**2)
return d