-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tune_mobilebert.py
54 lines (47 loc) · 1.9 KB
/
fine_tune_mobilebert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
from transformers import MobileBertTokenizer, MobileBertForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
# Load model and tokenizer
model_name = "google/mobilebert-uncased"
tokenizer = MobileBertTokenizer.from_pretrained(model_name)
model = MobileBertForSequenceClassification.from_pretrained(model_name, num_labels=2)
# Enable MPS if available
if torch.backends.mps.is_available():
model.to('mps')
print("Using MPS device")
else:
print("Using CPU device")
# Load dataset
dataset = load_dataset("csv", data_files="safety_dataset.csv")
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", max_length=64, truncation=True)
tokenized_dataset = dataset.map(tokenize_function, batched=True)["train"].train_test_split(test_size=0.2)
# Traning arguments
training_args = TrainingArguments(
output_dir="./fine_tuned_mobilebert",
num_train_epochs=15,
per_device_train_batch_size=8, # fits 1000 exampled dataset
per_device_eval_batch_size=8, # Matching train batch size
warmup_steps=500, # warmup for 1500 steps (100 steps/epoch × 15)
weight_decay=0.01,
learning_rate=5e-5,
logging_steps=10,
evaluation_strategy="epoch", # Eval each epoch, as in last run
save_strategy="epoch", # Save each epoch, as in last run
load_best_model_at_end=True, # Load best eval loss model, as in last run
metric_for_best_model="eval_loss",
greater_is_better=False, # Lower eval loss is better
save_total_limit=2,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
)
# Train and save
trainer.train()
model.save_pretrained("fine_tuned_mobilebert")
tokenizer.save_pretrained("fine_tuned_mobilebert")
print("Model fine-tuning complete!!!")