-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuntitled0.py
68 lines (41 loc) · 1.74 KB
/
untitled0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
"""Untitled0.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1FGgWiR5Cbk2TuipJxHdmEOuYGR2_EcEw
"""
import tensorflow as tf
from tensorflow.keras import datasets
from tensorflow.keras import layers
from tensorflow.keras import models
import matplotlib.pyplot as plt
(train_images,train_labels) , (test_images, test_labels) = datasets.cifar10.load_data()
train_images , test_images = train_images/255.0 , test_images/255.0
class_names =['avion', 'voiture', 'oiseau', 'chat', 'cerf', 'chien', 'grenouille', 'cheval', 'patou', 'camion']
plt.figure(figsize= (10, 10))
for i in range(25):
plt.subplot(5, 5, i+1)
plt.xticks([])
plt.yticks([])
plt.imshow(train_images[i], cmap = plt.cm.binary)
plt.xlabel(class_names[train_labels[i][0]])
plt.show
model = models.Sequential()
model.add(layers.Conv2D(32, (3,3), activation = 'relu' , input_shape = (32, 32, 3)))
model.add(layers.MaxPooling2D(2, 2))
model.add(layers.Conv2D(64, (3, 3), activation = 'relu'))
model.add(layers.MaxPooling2D(2, 2))
model.add(layers.Conv2D(64, (3, 3), activation = 'relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
model.summary()
model.compile(optimizer='adam',
metrics=['accuracy'],loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits =True ))
history = model.fit(train_images, train_labels, epochs = 10, validation_data=(test_images, test_labels))
plt.plot(history.history['accuracy'], label ='accuracy')
plt.plot(history.history['val_accuracy'], label= 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc = 'lower right')