-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_pkgdown.yml
122 lines (109 loc) · 2.6 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
## This file configures the building process for pkgdown::build_site()
template:
params:
noindex: true # tells search engines not to index the site
home:
strip_header: false
development:
mode: auto # detect based on version number
version_label: warning
version_tooltip: "The full API is stable, but sometimes limited"
navbar:
structure:
left:
- home
- intro
- reference
- articles
- news
right: github
reference:
- title: Evaluate precision dosing
desc: >
All these functions need a model, see section 'Models'
- subtitle: Fit population data
desc: >
These functions perform posthoc and/or proseval on population data
contents:
- dataTibble
- posthoc
- proseval
- subtitle: Add predictions for the population
desc: >
These functions can be used to append predictions to each tdmorefit instance
in the population
contents:
- predict.tdmorefit
- logLik.tdmorefit
- as.population
- as.sample
- subtitle: Simulate precision dosing
contents:
- doseSimulation
- findDose
- findDoses
- title: Models
- subtitle: Tdmore models
desc: >
Parameter estimation and dose recommendation needs a model. The methods below
allow you to construct a model using `nlmixr`, `RxODE`, or algebraic equations.
contents:
- tdmore
- errorModel
- subtitle: Metadata
desc: >
Model metadata allows to intelligently guess certain default settings
contents:
- metadata
- getDosingInterval
- covariate
- output
- formulation
- target
- getMetadataByName
- getMetadataByClass
- observed_variables
- getObservedVariables
- subtitle: Algebraic models
desc: >
Use an algebraic model in tdmore
contents:
- algebraic
- tdmore.algebraic
- linCmt
- pk_
- pk
- pkmodel
- subtitle: Model-predictive control
desc: >
Replace empirical bayesian estimation with model-predictive control in a tdmore model
contents:
- mpc
- subtitle: Mixture models
desc: >
A mixture model combines two subpopulations with an a priori probability
of belonging to either model A or model B
contents:
- tdmore_mixture
- tdmore_mixture_covariates
- subtitle: Example models
desc: >
Example datasets, with their respective population PK model as
estimated by nlmixr.
contents:
- theopp
- theopp_nlmixr
- pheno
- pheno_nlmixr
- getModel
- defaultModel
- title: Plotting
desc: >
These functions can be used to plot more detail for predictions
contents:
- autoplot.tdmore
- autoplot.tdmorefit
- autolayer.recommendation
- autoplot.tdmorefit_mixture
- parameterPlot.tdmorefit
- predictionLayer