-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
239 lines (185 loc) · 8.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import time
import os
import copy
import argparse
import pdb
import collections
import sys
import numpy as np
import logging
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torchvision import datasets, models, transforms
import torchvision
# import model
import hfv_model as model
from anchors import Anchors
import losses
# from dataloader import CocoDataset, CSVDataset, collater, Resizer, AspectRatioBasedSampler, Augmenter, UnNormalizer, Normalizer
# from dataloader import *
from hfv_dataloader import *
from torch.utils.data import Dataset, DataLoader
import json
import coco_eval
import hfv_csv_eval as csv_eval
# assert torch.__version__.split('.')[1] == '4'
os.environ['CUDA_VISIBLE_DEVICES']='0,1,2,3'
print('CUDA available: {}'.format(torch.cuda.is_available()))
def main(args=None):
print('0')
parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')
parser.add_argument('--dataset', default='csv', help='Dataset type, must be one of csv or coco.')
parser.add_argument('--coco_path', help='Path to COCO directory')
parser.add_argument('--csv_train', default='./data/pair_train_all.csv', help='Path to file containing training annotations (see readme)')
parser.add_argument('--csv_classes', default='./data/class.csv', help='Path to file containing class list (see readme)')
parser.add_argument('--csv_val', default='./data/pair_val_all.csv', help='Path to file containing validation annotations (optional, see readme)')
# parser.add_argument('--csv_val', default=None,
# help='Path to file containing validation annotations (optional, see readme)')
parser.add_argument('--depth', help='Resnet depth, must be one of 18, 34, 50, 101, 152', type=int, default=50)
parser.add_argument('--epochs', help='Number of epochs', type=int, default=20)
parser.add_argument('--model', help='Pretrained model or nothing', type=str, default=None)
parser.add_argument('--gpu', help='Whether to use gpu', type=bool, default=True)
parser = parser.parse_args(args)
# Create the data loaders
print('1')
if parser.dataset == 'coco':
if parser.coco_path is None:
raise ValueError('Must provide --coco_path when training on COCO,')
dataset_train = CocoDataset(parser.coco_path, set_name='train2017', transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]))
dataset_val = CocoDataset(parser.coco_path, set_name='val2017', transform=transforms.Compose([Normalizer(), Resizer()]))
elif parser.dataset == 'csv':
if parser.csv_train is None:
raise ValueError('Must provide --csv_train when training on COCO,')
if parser.csv_classes is None:
raise ValueError('Must provide --csv_classes when training on COCO,')
dataset_train = CSVDataset(train_file=parser.csv_train, class_list=parser.csv_classes, transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]))
if parser.csv_val is None:
dataset_val = None
print('No validation annotations provided.')
else:
dataset_val = CSVDataset(train_file=parser.csv_val, class_list=parser.csv_classes, transform=transforms.Compose([Normalizer(), Resizer()]))
else:
raise ValueError('Dataset type not understood (must be csv or coco), exiting.')
print('2')
sampler = AspectRatioBasedSampler(dataset_train, batch_size=8, drop_last=False) # bacth_size default 2
dataloader_train = DataLoader(dataset_train, num_workers=3, collate_fn=collater, batch_sampler=sampler)
if dataset_val is not None:
sampler_val = AspectRatioBasedSampler(dataset_val, batch_size=1, drop_last=False)
dataloader_val = DataLoader(dataset_val, num_workers=3, collate_fn=collater, batch_sampler=sampler_val)
dataloader_val = None
# Create the model
# if parser.depth == 18:
# retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True)
# elif parser.depth == 34:
# retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True)
# elif parser.depth == 50:
# retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True)
# elif parser.depth == 101:
# retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True)
# elif parser.depth == 152:
# retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True)
# else:
# raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152')
print('3')
start = 0
if parser.model is not None:
print('loading pretrained model {}'.format(parser.model))
retinanet = torch.load(parser.model)
s_b = parser.model.rindex('_')
s_e = parser.model.rindex('.')
# start = int(parser.model[s_b + 1:s_e]) + 1
print('continue on {}'.format(start))
else:
# Create the model
print('init model resnet{}'.format(parser.depth))
if parser.depth == 18:
retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True)
elif parser.depth == 34:
retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True)
elif parser.depth == 50:
retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True)
elif parser.depth == 101:
retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True)
elif parser.depth == 152:
retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True)
else:
raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152')
# use_gpu = True
print('4')
if parser.gpu:
retinanet = retinanet.cuda()
retinanet = torch.nn.DataParallel(retinanet).cuda()
retinanet.training = True
print('5')
# optimizer = optim.SGD(retinanet.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0001) # default lr = 1e-5
optimizer = optim.Adam(retinanet.parameters(), lr=1e-5)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[10, 16])
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)
loss_hist = collections.deque(maxlen=500)
print('6')
retinanet.train()
retinanet.module.freeze_bn()
logging.basicConfig(level=logging.DEBUG,
format="%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s",
datefmt='%b %d %H:%M', filename='./model/train.log', filemode='w')
print('Num training images: {}'.format(len(dataset_train)))
logging.info('Num training images: {}'.format(len(dataset_train)))
loss_curve = []
# for epoch_num in range(parser.epochs):
for epoch_num in range(start, parser.epochs):
retinanet.train()
retinanet.module.freeze_bn()
epoch_loss = []
mAP = 0
dis = 0
for iter_num, data in enumerate(dataloader_train):
#break
try:
optimizer.zero_grad()
classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']])
classification_loss = classification_loss.mean()
regression_loss = regression_loss.mean()
loss = classification_loss + regression_loss
if bool(loss == 0):
continue
loss.backward()
torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1) # default is open
optimizer.step()
loss_hist.append(float(loss))
epoch_loss.append(float(loss))
loss_curve.append(float(loss))
# print('Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format(epoch_num, iter_num, float(classification_loss), float(regression_loss), np.mean(loss_hist)))
print(
'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format(
epoch_num, iter_num, float(classification_loss), float(regression_loss), np.mean(loss_hist)))
logging.info(
'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format(
epoch_num, iter_num, float(classification_loss), float(regression_loss), np.mean(loss_hist)))
del classification_loss
del regression_loss
except Exception as e:
print(e)
continue
# if parser.dataset == 'coco':
if dataset_val is not None and 0:
if (epoch_num % 5 == 0 and epoch_num != 0) or epoch_num == parser.epochs - 1:
if parser.dataset == 'coco':
print('Evaluating dataset')
coco_eval.evaluate_coco(dataset_val, retinanet)
elif parser.dataset == 'csv': # and parser.csv_val is not None:
print('Evaluating dataset')
mAP, dis = csv_eval.evaluate(dataset_val, retinanet)
# scheduler.step(np.mean(epoch_loss))
scheduler.step()
# torch.save(retinanet.module, '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num))
torch.save(retinanet.module, './model/adam_A_F_{}_retinanet_{}_mAP{}_dis{}.pt'.format(parser.dataset, epoch_num, mAP, dis))
retinanet.eval()
# torch.save(retinanet, 'model_final.pt'.format(epoch_num))
torch.save(retinanet, './model/all_full_{}_retinanet_final.pt'.format(parser.dataset))
with open('loss.json', 'w') as f:
json.dump(loss_curve, f)
if __name__ == '__main__':
main()