-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
145 lines (106 loc) · 5.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# name: main.py
# description: Run code here for exercise prediction
# author: Vu Phan
import os
import argparse
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
import pickle
from torch import nn
from torch.utils.data import DataLoader
from utils.network import *
from utils.eval import *
from utils.preprocessing import *
from model.Type3 import *
def parse_net_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--data_type', dest = 'data_type', help = 'Type of data, inertial data (imu) or joint kinematics (jk)', type = str, default = 'imu')
parser.add_argument('--n_sensors', dest = 'n_sensors', help = 'Number of sensors (or IMUs)', type = int, default = 10)
parser.add_argument('--sensor_pos_1', dest = 'sensor_pos_1', help = 'Sensor position (if n_sensors = 1 or 2)', type = str, default = 'pelvis')
parser.add_argument('--sensor_pos_2', dest = 'sensor_pos_2', help = 'Sensor position (if n_sensors = 2)', type = str, default = 'thigh_r')
parser.add_argument('--sensor_mod', dest = 'sensor_mod', help = 'Sensor modalities (acc, gyr, or both)', type = str, default = 'both')
parser.add_argument('--downsample_factor', dest = 'downsample_factor', help = 'Downsample data', type = int, default = 1)
parser.add_argument('--pred_type', dest = 'pred_type', help = 'Predict exercises or groups', type = str, default = 'exercises')
return parser.parse_args()
def main_net(args):
args = parse_net_arguments()
data_type = args.data_type
if data_type == 'imu':
downsample_factor = args.downsample_factor # TODO: ADD PROCESSING FOR DATA DOWNSAMPLING
n_sensors = args.n_sensors
sensor_pos_1 = args.sensor_pos_1
sensor_pos_2 = args.sensor_pos_2
sensor_mod = args.sensor_mod
config = get_sensor_config(n_sensors, sensor_pos_1, sensor_pos_2, sensor_mod)
data_filename = get_data_filename_imu(n_sensors, sensor_pos_1, sensor_pos_2, sensor_mod)
elif data_type == 'jk':
config = get_jk_config()
data_filename = 'data_jk.pkl'
else:
pass
pred_type = args.pred_type
if pred_type == 'exercises':
num_classes = 37
else:
num_classes = 10
with open('data_processed/' + data_filename, 'rb') as f:
sample_list = pickle.load(f)
all_subject_id = list(range(1, 20))
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using {device} device')
perf_train_acc, perf_test_acc = [], []
perf_train_cm, perf_test_cm = [], []
perf_test_y_pred, perf_test_y_truth = [], []
for test_subject in all_subject_id[:]:
print('# Test subject = ' + str(test_subject))
train_list, test_list = [], []
for sample in sample_list:
if sample[0, constants.ID_SUBJECT_LABEL] in [train_subject for train_subject in all_subject_id if train_subject != test_subject]:
train_list.append(sample)
elif sample[0, constants.ID_SUBJECT_LABEL] == test_subject:
test_list.append(sample)
else:
pass
print('* Training size = ' + str(len(train_list)))
print('* Test size = ' + str(len(test_list)))
print('--- Obtain tuned hyperparameters')
hp_point = constants.TUNED_HP[test_subject]
s_batch_size = hp_point[constants.ID_BATCH_SIZE]
s_num_out = hp_point[constants.ID_NUM_OUT]
s_kernel_size = hp_point[constants.ID_KERNEL_SIZE]
s_stride = hp_point[constants.ID_STRIDE]
s_pool_size = hp_point[constants.ID_POOL_SIZE]
print(' + batch size = ' + str(s_batch_size))
print(' + conv num out = ' + str(s_num_out))
print(' + kernel size = ' + str(s_kernel_size))
print(' + stride length = ' + str(s_stride))
print(' + pool size = ' + str(s_pool_size))
train_data = MyDataset(train_list, constants.NORM_SAMPLE_LENGTH, num_classes)
test_data = MyDataset(test_list, constants.NORM_SAMPLE_LENGTH, num_classes)
train_dataloader = DataLoader(train_data, batch_size = s_batch_size, shuffle = True)
test_dataloader = DataLoader(test_data, batch_size = s_batch_size, shuffle = False)
conv_num_in = len(config.sensor_position) * (len(config.sensor_modality)) * constants.NUM_AX_PER_SENSOR
model = CNN_Alter_Block(conv_num_in, s_num_out, s_kernel_size, s_stride, s_pool_size, num_classes)
if device == 'cuda': model = model.cuda()
train_losses, val_losses = [], []
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr = constants.LEARNING_RATE, weight_decay = constants.ADAM_WEIGHT_DECAY)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor = constants.LEARNING_RATE_REDUCTION_FACTOR)
print('--- Start the performance evaluation')
for t in range(constants.NUM_EPOCHS):
print(f'Epoch {t + 1}\n---------------------')
temp_train_acc, temp_train_cm, _, _ = train_loop(train_dataloader, model, loss_fn, optimizer, num_classes, scheduler)
temp_test_acc, temp_test_cm, temp_y_truth, temp_y_pred = test_loop(test_dataloader, model, loss_fn, num_classes)
print('*** Training/testing performance')
perf_train_acc.append(temp_train_acc)
perf_test_acc.append(temp_test_acc)
print(perf_train_acc)
print(perf_test_acc)
perf_train_cm.append(temp_train_cm)
perf_test_cm.append(temp_test_cm)
perf_test_y_truth.append(temp_y_truth)
perf_test_y_pred.append(temp_y_pred)
if __name__ == '__main__':
main_net(sys.argv)