-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_module.py
270 lines (244 loc) · 10.6 KB
/
search_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from elasticsearch import Elasticsearch
from elasticsearch_dsl import Search
import numpy as np
es = Elasticsearch(['localhost'],port=9200)
label_fields = ["title"]
fields = ["title","cast","country","description"]
weight_fields =["title^2","cast^1","country^1","description^3"]
label_id =[]
Similarity_score=[]
Similarity_id = []
Similarity_title = []
Similarity_name =[]
tmp_precision =0
tmp_recall =0
tmp_f_measure =0
w_tmp_precision =0
w_tmp_recall =0
w_tmp_f_measure =0
Ag_precision = []
Ag_recall = []
Ag_f_measure = []
W_Ag_precision = []
W_Ag_recall = []
W_Ag_f_measure =[]
def label(index,label_query,label_fields):
label_id=[]
s = Search(using=es, index=index)
results = s.query("simple_query_string", query=label_query, fields=label_fields,
auto_generate_synonyms_phrase_query=True).execute()
for hit in results:
label_id.append(hit.meta.id)
# print('This is label_id:', label_id)
return label_id
def Similarity_module(index,query,fields):
Similarity_score=[]
Similarity_id =[]
Similarity_title = []
s = Search(using=es, index=index)
results = s.query("simple_query_string", query=query, fields=fields,
auto_generate_synonyms_phrase_query=True).execute()
for hit in results:
Similarity_score.append(hit.meta.score)
Similarity_id.append(hit.meta.id)
Similarity_title.append(hit.title)
# print('This is Similarity_score:', Similarity_score)
# print('This is Similarity_id:', Similarity_id)
Similarity_score = score_normalized(Similarity_score)
return Similarity_score,Similarity_id,Similarity_title
def Similarity_module_weight(index,query,weight_fields):
Similarity_score=[]
Similarity_id =[]
Similarity_title = []
s = Search(using=es, index=index)
results = s.query("simple_query_string", query=query, fields=weight_fields,
auto_generate_synonyms_phrase_query=True).execute()
for hit in results:
Similarity_score.append(hit.meta.score)
Similarity_id.append(hit.meta.id)
Similarity_title.append(hit.title)
# print('This is Similarity_score:', Similarity_score)
# print('This is Similarity_id:', Similarity_id)
Similarity_score=score_normalized(Similarity_score)
return Similarity_score,Similarity_id,Similarity_title
def cal_rec_pre(label_id,search_id):
tmp = [val for val in label_id if val in search_id]
precision = len(tmp) / len(label_id)
recall = len(tmp) / len(search_id)
print(precision)
print(recall)
f_measure = (2*precision*recall)/(precision+recall)
return precision,recall,f_measure
def score_normalized(Similarity_score):
normalize_score = []
min_score = min(Similarity_score)
max_score = max(Similarity_score)
for i in range(len(Similarity_score)):
normalize_score.append((Similarity_score[i]-min_score)/(max_score-min_score))
return normalize_score
def Kendall_rank_correlation(model1,model2,query,fields):
model1_score,model1_id,_=Similarity_module(model1,query,fields)
model2_score, model2_id,_ = Similarity_module(model2, query, fields)
Same_results = [val for val in model1_id if val in model2_id]
N = len(model1_id)
C = len(Same_results)
D = N - 2 * C
tau = (C - D) / (N * (N+1) / 2)
return tau
def rank_combination(query,index,fields):
score = []
id = []
name = []
rank = []
for i in range(len(index)):
_, Similarity_id, Similarity_name = Similarity_module(index[i], query, fields)
rank += [1,2,3,4,5,6,7,8,9,10]
id += Similarity_id
name += Similarity_name
# print(id)
id_unique = sorted(set(id), key=id.index)
rank_unique = []
name_unique = sorted(set(name), key=name.index)
sum_rank = 0
for j in range (len(id_unique)):
location = [i for i, a in enumerate(id) if a == id_unique[j]]
for k in range(len(location)):
sum_rank = sum_rank + rank[location[k]]
avg_rank = sum_rank/len(location)
rank_unique.append(float(avg_rank))
sum_rank = 0
rank_unique = np.array(rank_unique, dtype=np.float32)
id_unique = np.array(id_unique, dtype=np.int32)
name_unique = np.array(name_unique)
rank_unique = rank_unique[np.argsort(rank_unique)]
id_unique = id_unique[np.argsort(rank_unique)]
name_unique = name_unique[np.argsort(rank_unique)]
rank_id_name = np.array([rank_unique,id_unique,name_unique])
# print(rank_id_name[:, 0:10])
return rank_id_name[:, 0:10]
def socre_combination(query, index, fields):
score = []
id = []
name = []
for i in range(len(index)):
Similarity_score, Similarity_id, Similarity_name = Similarity_module(index[i], query, fields)
score += Similarity_score
id += Similarity_id
name += Similarity_name
id_unique = sorted(set(id), key=id.index)
score_unique = []
name_unique = sorted(set(name),key=name.index)
sum_score = 0
for j in range(len(id_unique)):
location = [i for i, a in enumerate(id) if a == id_unique[j]]
for k in range(len(location)):
sum_score = sum_score + score[location[k]]
avg_score = sum_score / len(location)
score_unique.append(float(avg_score))
sum_score = 0
score_unique = np.array(score_unique, dtype=np.float32)
id_unique = np.array(id_unique,dtype=np.int32)
name_unique = np.array(name_unique)
score_unique = score_unique[np.argsort(-score_unique)]
id_unique=id_unique[np.argsort(-score_unique)]
name_unique =name_unique[np.argsort(-score_unique)]
score_id_name = np.array([score_unique, id_unique, name_unique])
# print(score_id_name)
return score_id_name[:, 0:10]
if __name__ == '__main__':
print("----------------------")
label_query = ['Krish Trish and Baltiboy', 'Rings Lord', 'transformers', 'The Matrix', 'Star Trek', 'Vampire',
'spider man', 'Rocky', 'Avengers', 'Indiana Jones']
query = ['which series of Krish Trish Baloy is about India',
'Lord of the Rings about going to Mordor to destroy Rings',
'Transformers beat Megatron',
'The matrix is about protecting Zion',
'Star ship explore new space',
'Boy and his sister meet the vampire every night',
'The spider man collection of parallel universes',
'Rocky fights with former Soviet soldiers',
'Avengers against thanos who has infinite stones',
'Indiana Jones tries to find Ark of Covenant']
index = ['bm25netflix', 'dfinetflix','ibnetflix','dfrnetflix','lmjnetflix','tfidfnetflix','lmdnetflix']
for i in range(len(index)):
for j in range(len(label_query)):
label_id = label(index[i], label_query[j], label_fields)
size = len(label_id)
Similarity_score,Similarity_id,Similarity_title=Similarity_module(index[i],query[j],fields)
w_Similarity_score,w_Similarity_id,w_Similarity_title=Similarity_module_weight(index[i],query[j],weight_fields)
precision, recall,f_measure = cal_rec_pre(label_id,Similarity_id)
w_precision, w_recall,w_f_measure =cal_rec_pre(label_id,w_Similarity_id)
tmp_precision = tmp_precision+precision
tmp_recall = tmp_recall+recall
tmp_f_measure = tmp_f_measure+f_measure
w_tmp_precision = w_tmp_precision + w_precision
w_tmp_recall = w_tmp_recall + w_recall
w_f_measure =w_f_measure+w_f_measure
output_score = np.array(Similarity_score)
output_id = np.array(Similarity_id)
output_query = np.array(query[j])
Output_result=np.array([output_query,output_id,output_score])
np.savetxt("result/%s_query"%index[i]+"%i_result"%j,Output_result,fmt='%s')
w_output_score = np.array(w_Similarity_score)
w_output_id = np.array(w_Similarity_id)
W_Output_result = np.array([output_query, w_output_id, w_output_score])
np.savetxt("result/W_%s_query" % index[i] + "%i_result" % j, W_Output_result, fmt='%s')
Ag_precision.append(tmp_precision/len(label_query))
Ag_recall.append(tmp_recall/len(label_query))
Ag_f_measure.append(tmp_f_measure/len(label_query))
tmp_precision=0
tmp_recall=0
tmp_f_measure =0
W_Ag_precision.append(w_tmp_precision / len(label_query))
W_Ag_recall.append(w_tmp_recall / len(label_query))
W_Ag_f_measure.append(w_f_measure/len(label_query))
w_tmp_precision = 0
w_tmp_recall = 0
w_f_measure = 0
ag_precision=np.array(Ag_precision)
ag_recall=np.array(Ag_recall)
ag_f_measure = np.array(Ag_f_measure)
w_ag_precision = np.array(W_Ag_precision)
w_ag_recall = np.array(W_Ag_recall)
w_ag_f_measure = np.array(W_Ag_f_measure)
np.savetxt("result/Average_precision",ag_precision)
np.savetxt("result/Average_recall",ag_recall)
np.savetxt("result/Average_f_measure", ag_f_measure)
np.savetxt("result/W_Average_precision", w_ag_precision)
np.savetxt("result/W_Average_recall", w_ag_recall)
np.savetxt("result/W_Average_f_measure", w_ag_f_measure)
print("This is Ag_precision:",Ag_precision)
print("This is Ag_recall:",Ag_recall)
print("This is Ag_f_measure:", Ag_f_measure)
print("This is W_Ag_precision:", W_Ag_precision)
print("This is W_Ag_recall:", W_Ag_recall)
print("This is W_Ag_f_measure:", W_Ag_f_measure)
Avg_tau = []
max_p = 0
min_p = 10000
for i in range(7):
for j in range(7):
tmp = 0
tau = 0
for k in range(len(query)):
if i < j:
tau = Kendall_rank_correlation(index[i], index[j],query[k],fields)
# print(tau)
tmp = tmp + tau
p = tmp/len(query)
if max_p < p:
max_p = p
max_indexi = i
max_indexj = j
if p != 0:
Avg_tau.append((index[i], index[j],p))
if min_p > p:
min_p = p
min_indexi = i
min_indexj = j
tmp = 0
tau = 0
# print(index[i],index[j],(tmp/len(query)))
print("This is AVG_tau:",Avg_tau)
print("What combination has the highest tau:",index[max_indexi], index[max_indexj],max_p)
print("What combination has the lowest tau:", index[min_indexi], index[min_indexj],min_p)