-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathUnlearnablePC_generation.py
168 lines (143 loc) · 6.65 KB
/
UnlearnablePC_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse,random
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import open3d as o3d
from data_utils.ModelNetDataLoader40 import ModelNetDataLoader40
from data_utils.ModelNetDataLoader10 import ModelNetDataLoader10
from data_utils.ShapeNetDataLoader import PartNormalDataset
from data_utils.KITTIDataLoader import KITTIDataLoader
from data_utils.ScanObjectNNDataLoader import ScanObjectNNDataLoader
from torch.utils.data import DataLoader, TensorDataset
from utils import set_seed
import math
from utils import class_wise_transformation,get_list
import os
import sys
import importlib
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'classifiers'))
def load_data(args, data_path):
if args.dataset == 'ModelNet40':
DATASET = ModelNetDataLoader40(
root=data_path,
npoint=args.input_point_nums,
split='train',
normal_channel=False
)
elif args.dataset == 'ModelNet10':
DATASET = ModelNetDataLoader10(
root=data_path,
npoint=args.input_point_nums,
split='train',
normal_channel=False
)
elif args.dataset == 'ShapeNetPart':
DATASET = PartNormalDataset(
root=data_path,
npoint=args.input_point_nums,
split='train',
normal_channel=False
)
elif args.dataset == 'KITTI':
DATASET = KITTIDataLoader(
root=data_path,
npoints=256,
split='train',
)
elif args.dataset == 'ScanObjectNN':
DATASET = ScanObjectNNDataLoader(
root=data_path,
npoint=args.input_point_nums,
split='train',
)
else:
raise NotImplementedError
T_DataLoader = torch.utils.data.DataLoader(
DATASET,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers
)
print('Finish Loading Dataset...')
return T_DataLoader
def data_preprocess(data):
points, target = data
points = points # [B, N, C]
target = target[:, 0] # [B]
points = points.cuda()
target = target.cuda()
return points, target
def save_tensor_as_txt(args, points, filename):
points = points.squeeze(0)
file_path = os.path.join(args.output_dir,'example')
if not os.path.exists(file_path):
os.makedirs(file_path)
with open(os.path.join(file_path,filename), "w") as f:
for i in range(points.shape[0]):
msg = str(points[i][0]) + ' ' + str(points[i][1]) + ' ' + str(points[i][2])
f.write(msg+'\n')
f.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Unleanrable 3D Point Clouds: Class-wise Transformation Is All You Need')
parser.add_argument('--emb_dims', type=int, default=1024, metavar='N', help='Dimension of embeddings')
parser.add_argument('--batch_size', type=int, default=1, metavar='N', help='input batch size for training (default: 1)')
parser.add_argument('--input_point_nums', type=int, default=1024, help='Point nums of each point cloud')
parser.add_argument('--seed', type=int, default=2022, metavar='S', help='random seed (default: 2022)')
parser.add_argument('--dataset', type=str, default='ModelNet10', choices=['ModelNet10', 'ModelNet40', 'ShapeNetPart', 'KITTI', 'ScanObjectNN'])
parser.add_argument('--target_model', type=str, default='pointnet_cls', choices=['pointnet_cls', 'pointnet2_cls_msg', 'dgcnn', 'pointconv', 'pointcnn', 'paconv', 'pct', 'curvenet', 'simple_view'])
parser.add_argument('--num_workers', type=int, default=4, help='Worker nums of data loading.')
parser.add_argument('--normal', action='store_true', default=False, help='Whether to use normal information [default: False]')
parser.add_argument('--slight_range', type=int, default=15, help='x,y angle range [para 1]')
parser.add_argument('--main_range', type=int, default=120, help='z angle range [para 2]')
parser.add_argument('--sca_min', type=float, default=0.6, help='scale min bound [para 3]')
parser.add_argument('--sca_max', type=float, default=0.8, help='scale max bound [para 4]')
parser.add_argument('--mode', type=str)
parser.add_argument('--NUM_CLASSES', type=int, default=10)
args = parser.parse_args()
args.device = torch.device("cuda")
set_seed(args.seed)
if args.dataset == 'ModelNet40':
args.NUM_CLASSES = 40
data_path = "./clean_data/modelnet40_normal_resampled"
elif args.dataset == 'ModelNet10':
args.NUM_CLASSES = 10
data_path = "./clean_data/modelnet40_normal_resampled"
elif args.dataset == 'ShapeNetPart':
args.NUM_CLASSES = 16
data_path = './clean_data/shapenetcore_partanno_segmentation_benchmark_v0_normal/'
elif args.dataset == 'kitti':
args.NUM_CLASSES = 2
data_path = './clean_data/KITTI/training/object_cloud'
elif args.dataset == 'ScanObjectNN':
args.NUM_CLASSES = 15
data_path ='./clean_data/h5_files'
assert args.NUM_CLASSES != 0
import ast
args.mode = ast.literal_eval(args.mode)
mode_list = {m : get_list(m, args) for m in args.mode}
UMT_k = len(mode_list)
if UMT_k == 2:
data_path = os.path.join("./UE", args.dataset, str(args.slight_range) + '_' + str(args.main_range) + '_' + str(args.sca_min) + '_' + str(args.sca_max), "example")
elif UMT_k == 3:
data_path = os.path.join("./UE", args.dataset, str(args.slight_range) + '_' + str(args.main_range) + '_' + str(args.sca_min) + '_' + str(args.sca_max) + '_' + str(20), "example")
elif UMT_k == 4:
data_path = os.path.join("./UE", args.dataset, str(args.slight_range) + '_' + str(args.main_range) + '_' + str(args.sca_min) + '_' + str(args.sca_max) + '_' + str(20) + '_' + str(0.4), "example")
elif UMT_k == 1:
data_path = os.path.join("./UE", args.dataset, str(args.slight_range) + '_' + str(args.main_range) + "_1.0_1.0", "example")
data_loader = load_data(args, data_path)
pbar = tqdm(enumerate(data_loader), total=len(data_loader))
for batch_id, data in pbar:
if args.dataset == 'ShapeNetPart':
data = data[:2]
data, label = data_preprocess(data)
for idx in range(len(data)):
trans_data = data[idx].clone().detach()
for k, v in mode_list.items():
trans_data = torch.tensor(class_wise_transformation(trans_data, k, v, label[idx].item()))
data[idx] = trans_data
save_tensor_as_txt(args, data.detach().cpu().numpy(), f'{batch_id}_transform_{label.item()}.txt')
print("Generated Successfully!")