-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_torch.py
337 lines (289 loc) · 11.4 KB
/
utils_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import math
import torch
import time
import numpy as np
import mlconfig
import matplotlib.pyplot as plt
import random
import copy
from torch.utils.data import Dataset
import torchvision
from tqdm import tqdm
import PIL.Image as Image
import pretrainedmodels
from torch import nn
def plot_kendall_rank(data, plot_ratio=1.0):
from interval import Interval
from scipy.stats import kendalltau, pearsonr, spearmanr
assert plot_ratio in Interval(0, 1, closed=True), 'plot ration must in range 0 to 1.0'
idx = np.random.choice(a=len(data), size=int(len(data) * plot_ratio), replace=False)
data_to_plot = data[idx]
kendall_ranks = np.zeros((len(data_to_plot), len(data_to_plot)))
for i in range(len(data_to_plot)):
for j in range(len(data_to_plot)):
kendall_ranks[i][j] = kendalltau(data_to_plot[i], data_to_plot[j])[0]
if len(data_to_plot) <= 20:
plt.text(j, i, round(kendall_ranks[i][j], 2), ha="center", va="center", color="w")
avg_coff = (kendall_ranks.sum() - len(kendall_ranks)) / (len(kendall_ranks) * len(kendall_ranks) - len(kendall_ranks))
plt.title('Kendall rank correlation coefficient: {:.2f}'.format(avg_coff))
plt.imshow(kendall_ranks)
plt.colorbar()
plt.tight_layout()
plt.show()
def set_random_seed(seed=1234):
torch.backends.cudnn.deterministic = True
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def validate(val_loader, model, criterion, verbose=False, eval=False, one_hot=False, return_loss=False):
"""
Run evaluation
"""
losses = AverageMeter()
top1 = AverageMeter()
# # switch to evaluate mode
# model_state = model.training
# model.eval()
loop = enumerate(tqdm(val_loader)) if verbose else enumerate(val_loader)
with torch.no_grad():
for i, (input, target) in loop:
target = target.cuda()
input_var = input.cuda()
target_var = target.cuda()
# compute output
output = model(input_var)
loss = criterion(output, target_var)
output = output.float()
loss = loss.float()
# measure accuracy and record loss
if one_hot:
target = target.argmax(dim=-1)
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# print('Test: [{0}/{1}]\t'
# 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
# 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
# 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
# i, len(val_loader), batch_time=batch_time, loss=losses,
# top1=top1))
print(' * Prec@1 {top1.avg:.3f}'
.format(top1=top1))
res = losses.avg if return_loss else top1.avg
# model.training = model_state
return res
def normalize_model(dataset_name, model):
if dataset_name == 'cifar10':
mean = torch.from_numpy(np.array([0.4914, 0.4822, 0.4465]).reshape((1, 3, 1, 1))).cuda()
std = torch.from_numpy(np.array([0.247, 0.243, 0.261]).reshape((1, 3, 1, 1))).cuda()
elif dataset_name == 'imagenet':
mean = torch.from_numpy(np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))).cuda()
std = torch.from_numpy(np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))).cuda()
elif dataset_name == 'gtsrb':
mean = torch.from_numpy(np.array([0.3337, 0.3064, 0.3171]).reshape((1, 3, 1, 1))).cuda()
std = torch.from_numpy(np.array([0.2672, 0.2564, 0.2629]).reshape((1, 3, 1, 1))).cuda()
elif dataset_name == 'mnist':
mean = None
std = None
else:
raise NotImplementedError
model.eval()
if mean is not None:
model_normalized = lambda x: model(((x - mean) / std).type(torch.float))
else:
model_normalized = model
return model_normalized
def load_protect_model(dataset_name, model, normalize=True, eval=True):
if dataset_name in ['cifar10', 'gtsrb', 'mnist']:
arc_dict = {'cifar10': 'resnet20', 'gtsrb': 'convnet_fc', 'mnist': 'Lenet5'}
root_path = '/home/hdd/baixiaofan/PycharmProjects/BIV_Bench/'
model_path = "outputs/%s/random_start/%s/best_0.pth" % (dataset_name, arc_dict[dataset_name])
model_abs_path = root_path + model_path
pretrained_data = torch.load(model_abs_path)
model.load_state_dict(pretrained_data["model"])
print('load protect model from %s' % model_path)
elif dataset_name == 'imagenet':
# model_path = "outputs/imagenet/random_start/efficientnet/best_0.pth"
# pretrained_data = torch.load(model_path)
# model.load_state_dict(pretrained_data["model"])
# print('load protect model from %s' % model_path)
from torchvision.models import densenet121
model = densenet121(pretrained=True, progress=True).cuda()
else:
raise NotImplementedError
if normalize:
return normalize_model(dataset_name, model)
if eval:
model.eval()
return model
def from_gpu_to_numpy(x):
return x.cpu().detach().numpy()
def from_numpy_to_gpu(x):
return torch.from_numpy(x).cuda()
class DatasetInfo:
def __init__(self, dataset, debug=False):
self.name = dataset
self.load_with_keras = False
self.train_batch_size = 32
self.eval_batch_size = 256 # 64 if debug else
self.load_path = "../../data/%s" % dataset
# self.accept_clean_acc_degrade = 0.05
self.accept_trapdoor_acc = 0.94
self.data_augmentation = False
self.accept_cosine_benign_trapdoor = -np.inf
if dataset == "mnist":
self.img_shape = (1, 28, 28)
self.num_classes = 10
self.epochs = 5 # 60 # 30 #
self.accept_clean_acc = 0.97
self.clip_max = 1.
self.clip_min = 0.
def lr_schedule(epoch):
lr = 1e-3
# if epoch > 20:
# lr *= 1e-1
if epoch > 40:
lr *= 1e-1
elif epoch > 50:
lr *= 1e-2
print('Learning rate: ', lr)
return lr
elif dataset == "cifar10":
self.img_shape = (3, 32, 32)
self.num_classes = 10
self.load_with_keras = True
self.epochs = 200
self.data_augmentation = True
self.train_batch_size = 128
self.eval_batch_size = 64
self.accept_clean_acc = 0.82
self.clip_max = 1.
self.clip_min = 0.
# self.name = "cifar10"
self.max_step = math.ceil(50000 / self.train_batch_size)
def lr_schedule(epoch):
# lr = 1e-3
# if epoch > 90:
# lr *= 1e-3
# elif epoch > 80:
# lr *= 1e-2
# elif epoch > 60:
# lr *= 1e-1
# print('Learning rate: ', lr)
lr = 1e-3
if epoch > 180:
lr *= 0.5e-3
elif epoch > 160:
lr *= 1e-3
elif epoch > 120:
lr *= 1e-2
elif epoch > 80:
lr *= 1e-1
print('Learning rate: ', lr)
return lr
elif dataset == "gtsrb":
self.img_shape = (3, 32, 32)
self.num_classes = 43
self.epochs = 30
self.accept_clean_acc = 0.93
self.clip_max = 1.
self.clip_min = 0.
def lr_schedule(epoch):
lr = 1e-3
if epoch > 20:
lr *= 1e-1
print('Learning rate: ', lr)
return lr
elif dataset == "cifar100":
self.img_shape = (32, 32, 3)
self.num_classes = 100
self.load_with_keras = True
self.train_batch_size = 32
self.epochs = 200
self.accept_clean_acc = 0.70
self.clip_max = 1.
self.clip_min = 0.
self.mean = [0.5070751592371323, 0.48654887331495095, 0.4409178433670343]
self.std = [0.2673342858792401, 0.2564384629170883, 0.27615047132568404]
def lr_schedule(epoch):
lr = 1e-3
if epoch > 20:
lr *= 1e-1
print('Learning rate: ', lr)
return lr
elif dataset == "youtube_face":
self.img_shape = (224, 224, 3)
self.num_classes = 1283
self.epochs = 1 # 10 for all label and clean from scratch
self.eval_batch_size = 32
self.accept_clean_acc = 0.98
def lr_schedule(epoch):
lr = 1e-3
if epoch > 5:
lr *= 1e-1
print('Learning rate: ', lr)
return lr
elif dataset == "imagenet":
# only use to keep interface consistence and get num of classes
self.num_classes = 1000
self.epochs = 50
self.eval_batch_size = 4
self.clip_max = 255.
self.clip_min = 0.
self.img_shape = (224, 224, 3)
self.train_batch_size = 32
# self.name = "imagenet"
def lr_schedule(epoch):
lr = 1e-3
if epoch > 10:
lr *= 1e-1
print('Learning rate: ', lr)
return lr
elif dataset == "vggface2":
# only use to keep interface consistence and get num of classes
self.num_classes = 2622
self.epochs = 50
self.eval_batch_size = 4
self.clip_max = 255.
self.clip_min = 0.
self.img_shape = (224, 224, 3)
# self.name = "imagenet"
def lr_schedule(epoch):
lr = 1e-3
if epoch > 10:
lr *= 1e-1
print('Learning rate: ', lr)
return lr
else:
raise NotImplementedError
self.lr_schedule = lr_schedule
self.num_batch_train = 0
self.num_batch_val = 0
self.num_batch_test = 0