-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
165 lines (153 loc) · 5.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from ast import Mult
import torch
import torch.nn as nn
from torch.nn import functional as F
import random
block_size = 512
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
eval_iters = 100
batch_size = 32
max_iters = 20000000
learning_rate = 1e-4
n_embed = 384
n_layer = 12
n_head = 4
dropout = 0.2
#!wget https://raw.githubusercontent.com/BrightTheBackpack/llm/main/training.txt?token=GHSAT0AAAAAACURFFPTK5BTMULLUAQMY5CSZXDYTWA
with open('all_poems.txt', 'r', encoding = "utf8") as file:
text = file.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
#decode and encode text into numbers stoi(string to int)
stoi = { ch:i for i, ch in enumerate(chars)}
itos = { i:ch for i, ch in enumerate(chars)}
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9*len(data))
train_data = data[:n]
val_data = data[n:]
train_data[:block_size+1]
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x,y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ['train' , 'val']:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
x,y = get_batch(split)
logits, loss = model(x,y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embed,head_size, bias=False)
self.query = nn.Linear(n_embed,head_size, bias=False)
self.value = nn.Linear(n_embed,head_size, bias=False)
self.dropout = nn.Dropout(dropout)
self.register_buffer("tril", torch.tril(torch.ones(block_size,block_size)))
def forward(self,x):
B,T,C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2,-1) * C**-0.5
wei = wei.masked_fill(self.tril[:T, :T] ==0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embed, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim = -1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
def __init__(self, n_embed):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed, 4* n_embed),
nn.ReLU(),
nn.Linear(4 * n_embed, n_embed),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_embed, n_head):
super().__init__()
head_size = n_embed // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embed)
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self,x):
x = x + self.sa(self.ln1(x))
x = x+ self.ffwd(self.ln2(x))
return x
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.position_embedding_table = nn.Embedding(block_size, n_embed)
self.blocks = nn.Sequential(*[Block(n_embed, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embed)
self.sa_head = MultiHeadAttention(4, n_embed//4)#MultiHeadAttention(4, n_embed//4)
self.ffwd = FeedFoward(n_embed)
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
B,T = idx.shape
tok_emb = self.token_embedding_table(idx) #B,T,C
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device))[None,:,:] #1,T,C
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B,T,C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits,targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:,-block_size:]
logits, loss = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
device = "cuda" if torch.cuda.is_available() else "cpu"
model = BigramLanguageModel().to(device)
model.load_state_dict(torch.load('model.pth', map_location=device))
# Set the model to evaluation mode
model.eval()
# Example of how to generate text using the model
def generate_text(start_word, max_new_tokens=300):
encoded_word = encode(start_word)
idx = torch.tensor(encoded_word, dtype=torch.long, device=device).view(1, -1)
generated_idx = model.generate(idx, max_new_tokens)
return decode(generated_idx[0].tolist())
# Use the model to generate text
start_word = " " # Replace with your chosen start word
generated_text = generate_text(start_word)
print(generated_text)