Skip to content

Latest commit

 

History

History
92 lines (72 loc) · 7.28 KB

README_pypi.md

File metadata and controls

92 lines (72 loc) · 7.28 KB

Using DeepMol models

Models available so far:

Model Name How to Call Prediction Type
BBB (Blood-Brain Barrier) BBB Penetrates BBB (1) or does not penetrate BBB (0)
AMES Mutagenicity AMES Mutagenic (1) or not mutagenic (0)
Human plasma protein binding rate (PPBR) PPBR Rate of PPBR expressed in percentage
Volume of Distribution (VD) at steady state VDss Volume of Distribution expressed in liters per kilogram (L/kg)
Caco-2 (Cell Effective Permeability) Caco2 Cell Effective Permeability (cm/s)
HIA (Human Intestinal Absorption) HIA Absorbed (1) or not absorbed (0)
Bioavailability Bioavailability Bioavailable (1) or not bioavailable (0)
Lipophilicity Lipophilicity Lipophilicity log-ratio
Solubility Solubility Solubility (log mol/L)
CYP P450 2C9 Inhibition CYP2C9Inhibition Inhibit (1) or does not inhibit (0)
CYP P450 3A4 Inhibition CYP3A4Inhibition Inhibit (1) or does not inhibit (0)
CYP2C9 Substrate CYP2C9Substrate Metabolized (1) or does not metabolize (0)
CYP2D6 Substrate CYP2D6Substrate Metabolized (1) or does not metabolize (0)
CYP3A4 Substrate CYP3A4Substrate Metabolized (1) or does not metabolize (0)
Hepatocyte Clearance HepatocyteClearance Drug hepatocyte clearance (uL.min-1.(10^6 cells)-1)
NPClassifier NPClassifier Pathway, Superclass, Class
Plants secondary metabolite precursors predictor PlantsSMPrecursorPredictor Precursor 1; Precursor 2
Microsome Clearance MicrosomeClearance Drug microsome clearance (mL.min-1.g-1)
LD50 LD50 LD50 (log(1/(mol/kg)))
hERG Blockers hERGBlockers hERG blocker (1) or not blocker (0)

How to use:

You can use them either individually or mixed together.

You can call one model individually, pass a CSV file and get the results in one dataframe:

from deepmol_models import BBB
results = BBB().predict_from_csv("dataset.csv", smiles_field="Drug", id_field="Drug_ID", output_file="predictions.csv")
results
ID SMILES BBB Penetration
0 OCC(S)CS 1.0
1 CCN+(C)c1cccc(O)c1 0.0
2 Nc1ncnc2c1ncn2[C@@H]1OC@HC@@H[C@@H]1O 1.0
3 CC(=O)OCC1=C(C(=O)O)N2C(=O)C@@H[... 0.0
4 CC1(C)S[C@@H]2[C@H](NC(=O)C@Hc3ccsc3... 0.0

Or pass SMILES strings and get the results in one dataframe:

from deepmol_models import BBB
results = BBB().predict_from_csv("dataset.csv", smiles_field="Drug", id_field="Drug_ID", output_file="predictions.csv")
results
ID SMILES BBB Penetration
1 CCN+(C)c1cccc(O)c1 0.0
2 Nc1ncnc2c1ncn2[C@@H]1OC@HC@@H[C@@H]1O 1.0

Complementarily, you can run several models:

from deepmol_models import BBB, PPBR, VDss, Caco2, HIA, Bioavailability, \
    Lipophilicity, Solubility, PlantsSMPrecursorPredictor, NPClassifier, MixedPredictor

# results = MixedPredictor([BBB(), Caco2(), CYP2D6Inhibition(), NPClassifier()]).predict_from_csv("test_molecules.csv", "Drug", "Drug_ID", output_file="predictions.csv")
results = MixedPredictor([BBB(), PPBR(), VDss(), Caco2(), 
                          HIA(), Bioavailability(), Lipophilicity(),
                          Solubility(), PlantsSMPrecursorPredictor(), NPClassifier()]).predict_from_csv("test_molecules.csv", smiles_field="Drug", id_field="Drug_ID", output_file="predictions.csv")
results
ID SMILES BBB Penetration Human PPBR VDss Cell Effective Permeability Human Intestinal Absorption Bioavailability Lipophilicity Solubility Precursors Pathways Superclass Class
0 OCC(S)CS 1.0 64.832665 5.803529 -4.725497 0.0 0.0 0.290602 0.117866 Fatty acyls Fatty alcohols Fatty alcohols
1 CCN+(C)c1cccc(O)c1 0.0 32.882912 2.891243 -4.989814 0.0 0.0 0.271549 -0.606772 L-Lysine Alkaloids Tyrosine alkaloids Phenylethylamines
2 Nc1ncnc2c1ncn2[C@@H]1OC@HC@@H[C@@H]1O 1.0 41.540812 2.722000 -6.059630 1.0 0.0 0.250526 -1.701435 Dimethylallyl diphosphate Carbohydrates Nucleosides Purine nucleosides
3 CC(=O)OCC1=C(C(=O)O)N2C(=O)C@@H[...] 0.0 52.921825 0.329071 -5.473660 0.0 0.0 0.267842 -2.512460 Geranylgeranyl diphosphate; L-Alanine Amino acids and Peptides β-lactams Cephalosporins

Visualization

You can use our API to access the bokeh representation of the chemical space and check some features of the molecules:

from deepmol_models import bokeh_plot
bokeh_plot(results, "Solubility", additional_labels=["Pathways", "Superclass", "Class"])

bokeh