-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSentinel-2_09_07_2020.py
140 lines (109 loc) · 5.47 KB
/
Sentinel-2_09_07_2020.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding: utf-8 -*-
import ee
from ee_plugin import Map
from qgis.PyQt.QtCore import QCoreApplication
from qgis.core import (QgsProcessing,
QgsFeatureSink,
QgsProcessingException,
QgsProcessingAlgorithm,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterFeatureSink)
from qgis import processing
class ExampleProcessingAlgorithm(QgsProcessingAlgorithm):
"""
This is an example algorithm that takes a vector layer and
creates a new identical one.
It is meant to be used as an example of how to create your own
algorithms and explain methods and variables used to do it. An
algorithm like this will be available in all elements, and there
is not need for additional work.
All Processing algorithms should extend the QgsProcessingAlgorithm
class.
"""
# Constants used to refer to parameters and outputs. They will be
# used when calling the algorithm from another algorithm, or when
# calling from the QGIS console.
INPUT = 'INPUT'
OUTPUT = 'OUTPUT'
def tr(self, string):
"""
Returns a translatable string with the self.tr() function.
"""
return QCoreApplication.translate('Processing', string)
def createInstance(self):
return ExampleProcessingAlgorithm()
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'Sentinel-2'
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
return self.tr('Sentinel-2')
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
return self.tr('Visualização de Sistemas Orbitais - ViSO SIPAM/CR-PV')
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'Visualização de Sistemas Orbitais - ViSO SIPAM/CR-PV'
def shortHelpString(self):
"""
Returns a localised short helper string for the algorithm. This string
should provide a basic description about what the algorithm does and the
parameters and outputs associated with it..
"""
return self.tr("Example algorithm short description")
"""
def initAlgorithm(self, config=None):
Here we define the inputs and output of the algorithm, along
with some other properties.
# We add the input vector features source. It can have any kind of
# geometry.
self.addParameter(
QgsProcessingParameterFeatureSource(
self.INPUT,
self.tr('Input layer'),
[QgsProcessing.TypeVectorAnyGeometry]
)
)
# We add a feature sink in which to store our processed features (this
# usually takes the form of a newly created vector layer when the
# algorithm is run in QGIS).
self.addParameter(
QgsProcessingParameterFeatureSink(
self.OUTPUT,
self.tr('Output layer')
)
)
"""
def processAlgorithm(self, parameters, context, feedback):
collectt = ee.ImageCollection('COPERNICUS/S2_SR').filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 5)).filterDate('2019-09-15', '2019-12-30')
median2019=collectt.median()
S2_2019=median2019.divide(10000)
collect = ee.ImageCollection('COPERNICUS/S2_SR').filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 5)).filterDate('2020-03-15', '2020-10-30')
collecttt = ee.ImageCollection('COPERNICUS/S2_SR').filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 10)).filterDate('2020-01-15', '2020-03-05')
medianatual=collect.median().divide(10000)
medianJAN20=collecttt.median().divide(10000)
Map.addLayer(S2_2019,{"bands": ['B4', 'B3', 'B2'], "min": 0.02, "max": 0.09, "gamma": 1}, 'Sentinel-2 Cor natural 2019 - Estiagem',0)
Map.addLayer(S2_2019,{"bands": ['B11', 'B8', 'B4'], "min": 0.02, "max": 0.4}, 'Sentinel-2 Falsa Cor 2019 - Estiagem',0)
Map.addLayer(medianatual,{"bands": ['B4', 'B3', 'B2'], "min": 0.02, "max": 0.09, "gamma": 1}, 'Sentinel-2 Cor natural 2020',0)
Map.addLayer(medianJAN20,{"bands": ['B4', 'B3', 'B2'], "min": 0.02, "max": 0.09, "gamma": 1}, 'Sentinel-2 Cor natural JAN/FEV',0)
Map.addLayer(medianJAN20,{"bands": ['B11', 'B8', 'B4'], "min": 0.02, "max": 0.4, "gamma": 1}, 'Sentinel-2 Falsa Cor JAN/FEV',0)
Map.addLayer(medianatual,{"bands": ['B11', 'B8', 'B4'], "min": 0.02, "max": 0.4}, 'Sentinel-2 Falsa Cor 2020',0)
Map.getCenter()