-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcoupling_schemes.py
618 lines (472 loc) · 27.5 KB
/
coupling_schemes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
import numpy as np
from scipy.interpolate import PPoly
from space_discretization import second_derivative_matrix, compute_finite_difference_scheme_coeffs
from time_integration import ImplicitTrapezoidalRule, ExplicitHeun, TimeIntegrationScheme, RungeKutta4, ContinuousRepresentationScheme
import finite_difference_schemes
from domain import Domain
import numeric_parameters
import abc
def estimate_coupling_neumann_BC(left_domain, u_left, right_domain, u_right):
"""
estimate neumann boundary condition at the coupling interface between left_domain and right_domain from existing nodal data
:param left_domain: left domain
:type left_domain: Domain
:param u_left: solution on left domain
:param left_domain: right domain
:type right_domain: Domain
:param u_right: solution on right domain
@type right_domain Domain
"""
# set neumann BC at coupling interface
if numeric_parameters.neumann_coupling_scheme == 'forward':
u_neumann_coupled__ = finite_difference_schemes.one_sided_forward_FD_at(0, right_domain.h, u_right, order=numeric_parameters.neumann_coupling_order)
elif numeric_parameters.neumann_coupling_scheme == 'central':
if abs(left_domain.grid.h - right_domain.grid.h) < 10**-10: # use central finite differences
u_glued = np.array(u_left.tolist()[0:-1] + u_right.tolist())
u_neumann_coupled__ = finite_difference_schemes.central_FD_at(left_domain.u.shape[0]-1, right_domain.grid.h, u_glued, order=numeric_parameters.neumann_coupling_order)
else: # use modified operator for non-identical mesh size
if numeric_parameters.neumann_coupling_order != 2:
print("Operator of order %d is not implemented!!!" % numeric_parameters.neumann_coupling_order)
quit()
fraction = left_domain.grid.h / right_domain.grid.h # normalize to right domain's meshwidth
p = np.array([-fraction, 0, 1.0])
c = compute_finite_difference_scheme_coeffs(evaluation_points=p, derivative_order=1)
#assert abs(u_right[0] - u_left[-1]) < 10**-5
u = np.array([u_left[-2], u_right[0], u_right[1]])
u_neumann_coupled__ = 1.0/right_domain.grid.h * (u.dot(c))
else:
print("not implemented schemes for coupling Neumann BC demanded!")
quit()
return u_neumann_coupled__
class CouplingScheme(object):
"""
abstract class defining a coupling scheme.
"""
__metaclass__ = abc.ABCMeta
name = "Coupling Scheme"
def __init__(self):
# type: () -> object
return
@abc.abstractmethod
def perform(self, t0, tau, left_domain, right_domain):
"""
abstract method to perform one coupled timestep with coupling between equation on left_domain and right_domain
:param t0: current time
:param tau: time step size
:param left_domain: left domain with independent model
:param right_domain: right domain with independent model
:return:
"""
return
class FullyImplicitCoupling(CouplingScheme):
"""
fully implicit coupling with iterative coupling
"""
name = "Fully Implicit Coupling"
def __init__(self):
super(FullyImplicitCoupling, self).__init__()
def perform(self, t0, tau, left_domain, right_domain):
residual = np.inf
tol = numeric_parameters.fixed_point_tol
n_steps_max = numeric_parameters.n_max_fixed_point_iterations
n_steps = 0
# use boundary conditions of t_n-1 as initial guess for t_n
u_neumann_coupled = left_domain.right_BC["neumann"]
u_dirichlet_coupled = right_domain.left_BC["dirichlet"]
# enforce boundary conditions
left_domain.u[0] = left_domain.left_BC["dirichlet"]
right_domain.u[-1] = right_domain.right_BC["dirichlet"]
# start fixed point iteration for determining boundary conditions for t_n
while abs(residual) > tol and n_steps < n_steps_max:
# operator for left participant
# f(u,t_n) with boundary conditions from this timestep
A_left, R_left = second_derivative_matrix(left_domain.grid, dirichlet_l=left_domain.left_BC["dirichlet"], neumann_r=u_neumann_coupled)
# use most recent coupling variables for all
left_domain.time_integration_scheme.set_all_rhs(A_left, R_left)
# time stepping
u_left_new = left_domain.time_integration_scheme.do_step(left_domain.u, tau)
# update dirichlet BC at coupling interface
u_dirichlet_coupled = u_left_new[-1]
# operator for right participant
A_right, R_right = second_derivative_matrix(right_domain.grid, dirichlet_l=u_dirichlet_coupled, dirichlet_r=right_domain.right_BC["dirichlet"])
# use most recent coupling variables for all
right_domain.time_integration_scheme.set_all_rhs(A_right, R_right)
# time stepping
u_right_new = right_domain.time_integration_scheme.do_step(right_domain.u, tau) # only use most recent coupling variables for implicit part of time stepping -> semi implicit
# set dirichlet BC at coupling interface
u_right_new[0] = u_dirichlet_coupled
u_neumann_coupled__ = estimate_coupling_neumann_BC(left_domain, u_left_new, right_domain, u_right_new)
residual = u_neumann_coupled__ - u_neumann_coupled
# Aitken's Underrelaxation
omega = .5 # todo just a random number currently
u_neumann_coupled += omega * residual
n_steps += 1
if n_steps == n_steps_max:
print("maximum number of steps exceeded!")
return False
# update solution
left_domain.update_u(u_left_new)
right_domain.update_u(u_right_new)
# update coupling variables
left_domain.right_BC["neumann"] = u_neumann_coupled
right_domain.left_BC["dirichlet"] = u_dirichlet_coupled
return True
class FullyExplicitCoupling(CouplingScheme):
"""
fully explicit coupling with staggered approach
"""
name = "Fully Explicit Coupling"
def __init__(self):
super(FullyExplicitCoupling, self).__init__()
def perform(self, t0, tau, left_domain, right_domain):
"""
@type left_domain Domain
@type right_domain Domain
:param t0:
"""
# enforce boundary conditions
left_domain.u[0] = left_domain.left_BC["dirichlet"]
right_domain.u[-1] = right_domain.right_BC["dirichlet"]
# get coupling boundary conditions for left participant
u_neumann_coupled = left_domain.right_BC["neumann"]
# operator for left participant
# f(u,t_n) with boundary conditions from this timestep
A_left, R_left = second_derivative_matrix(left_domain.grid, dirichlet_l=left_domain.left_BC["dirichlet"], neumann_r=u_neumann_coupled)
# always use most recent coupling variables for all substeps -> fully explicit
left_domain.time_integration_scheme.set_all_rhs(A_left, R_left)
# time stepping
u_left = left_domain.time_integration_scheme.do_step(left_domain.u, tau)
# get coupling boundary conditions for right participant
u_dirichlet_coupled = u_left[-1]
# operator for right participant
A_right, R_right = second_derivative_matrix(right_domain.grid, dirichlet_l=u_dirichlet_coupled, dirichlet_r=right_domain.right_BC["dirichlet"])
# always use most recent coupling variables for all substeps -> fully explicit
right_domain.time_integration_scheme.set_all_rhs(A_right, R_right)
# time stepping
u_right = right_domain.time_integration_scheme.do_step(right_domain.u, tau)
# set dirichlet BC at coupling interface
u_right[0] = u_dirichlet_coupled
u_neumann_coupled__ = estimate_coupling_neumann_BC(left_domain, u_left, right_domain, u_right)
residual = u_neumann_coupled__ - left_domain.right_BC["neumann"]
# Aitken's Underrelaxation
omega = .5 # todo just a random number currently
u_neumann_coupled = left_domain.right_BC["neumann"] + omega * residual
left_domain.update_u(u_left)
right_domain.update_u(u_right)
# update coupling variables
left_domain.right_BC["neumann"] = u_neumann_coupled
right_domain.left_BC["dirichlet"] = u_dirichlet_coupled
return True
class WaveformCoupling(CouplingScheme):
"""
waveform coupling relying on waveform relaxation
"""
name = "Waveform Coupling"
def __init__(self, n_left=1, n_right=1):
if n_left != n_right:
self.name_suffix = "inhom ("+str(n_left)+"-"+str(n_right)+")"
self.n_substeps_left = n_left
self.n_substeps_right = n_right
super(WaveformCoupling, self).__init__()
def perform(self, t0, tau, left_domain, right_domain):
"""
@type left_domain Domain
@type right_domain Domain
:param t0:
"""
assert issubclass(type(left_domain.time_integration_scheme), ContinuousRepresentationScheme)
assert issubclass(type(right_domain.time_integration_scheme), ContinuousRepresentationScheme)
# use boundary conditions of t_n-1 as initial guess for t_n
u_neumann_continuous = lambda tt: left_domain.right_BC["neumann"] * np.ones_like(tt)
# enforce boundary conditions
left_domain.u[0] = left_domain.left_BC["dirichlet"]
right_domain.u[-1] = right_domain.right_BC["dirichlet"]
t1 = t0+tau
# do fixed number of sweeps
for window_sweep in range(5):
# subcycling parameters
max_approximation_order = 5
# operator for left participant
t_sub, tau_sub = np.linspace(t0, t1, self.n_substeps_left + 1, retstep=True)
u0_sub = left_domain.u
coeffs_m1 = np.zeros([max_approximation_order + 1, self.n_substeps_left])
coeffs_m2 = np.zeros([max_approximation_order + 1, self.n_substeps_left])
for ii in range(self.n_substeps_left):
t0_sub = t_sub[ii]
sampling_times_substep = left_domain.time_integration_scheme.get_sampling_times(t0_sub, tau_sub)
for i in range(sampling_times_substep.shape[0]):
# f(u,t_n) with boundary conditions from this timestep
A, R = second_derivative_matrix(left_domain.grid, dirichlet_l=left_domain.left_BC["dirichlet"], neumann_r=u_neumann_continuous(sampling_times_substep[i]))
# use most recent coupling variables for all
left_domain.time_integration_scheme.set_rhs(A, R, i)
# time stepping
u1_sub = left_domain.time_integration_scheme.do_step(u0_sub, tau_sub)
# do time continuous reconstruction of Nodal values
u_dirichlet_continuous_sub_m1 = left_domain.time_integration_scheme.get_continuous_representation_for_component(
-1, t0_sub, u0_sub, u1_sub, tau_sub)
u_dirichlet_continuous_sub_m2 = left_domain.time_integration_scheme.get_continuous_representation_for_component(
-2, t0_sub, u0_sub, u1_sub, tau_sub)
coeffs_m1[:u_dirichlet_continuous_sub_m1.coef.shape[0], ii] = u_dirichlet_continuous_sub_m1.coef
coeffs_m2[:u_dirichlet_continuous_sub_m2.coef.shape[0], ii] = u_dirichlet_continuous_sub_m2.coef
u0_sub = u1_sub
if self.n_substeps_left == 1:
u_dirichlet_continuous_m1 = u_dirichlet_continuous_sub_m1
u_dirichlet_continuous_m2 = u_dirichlet_continuous_sub_m2
else:
u_dirichlet_continuous_m1 = PPoly(coeffs_m1[::-1,:], t_sub) # we have to reverse the order of the coefficients for PPoly
u_dirichlet_continuous_m2 = PPoly(coeffs_m2[::-1,:], t_sub) # we have to reverse the order of the coefficients for PPoly
u_left_new = u1_sub # use result of last subcycle for result of window
# operator for right participant
t_sub, tau_sub = np.linspace(t0, t1, self.n_substeps_right + 1, retstep=True)
u0_sub = right_domain.u
coeffs_p1 = np.zeros([max_approximation_order + 1, self.n_substeps_right])
for ii in range(self.n_substeps_right):
t0_sub = t_sub[ii]
sampling_times_substep = right_domain.time_integration_scheme.get_sampling_times(t0_sub, tau_sub)
for i in range(sampling_times_substep.shape[0]):
# f(u,t_n) with boundary conditions from this timestep
A, R = second_derivative_matrix(right_domain.grid, dirichlet_l=u_dirichlet_continuous_m1(sampling_times_substep[i]), dirichlet_r=right_domain.right_BC["dirichlet"])
# use most recent coupling variables for all
right_domain.time_integration_scheme.set_rhs(A, R, i)
# time stepping
u1_sub = right_domain.time_integration_scheme.do_step(u0_sub, tau_sub)
u_dirichlet_continuous_sub_p1 = right_domain.time_integration_scheme.get_continuous_representation_for_component(
1, t0_sub, u0_sub, u1_sub, tau_sub)
u1_sub[0] = u_dirichlet_continuous_m1(t0_sub+tau_sub) # we have to set the (known and changing) dirichlet value manually, since this value is not changed by the timestepping
coeffs_p1[:u_dirichlet_continuous_sub_p1.coef.shape[0], ii] = u_dirichlet_continuous_sub_p1.coef
u0_sub = u1_sub
if self.n_substeps_right == 1:
u_dirichlet_continuous_p1 = u_dirichlet_continuous_sub_p1
else:
u_dirichlet_continuous_p1 = PPoly(coeffs_p1[::-1,:], t_sub) # we have to reverse the order of the coefficients for PPoly
u_right_new = u1_sub # use result of last subcycle for result of window
u_right_new[0] = u_dirichlet_continuous_m1(t0+tau) # we have to set the (known and changing) dirichlet value manually, since this value is not changed by the timestepping
if numeric_parameters.neumann_coupling_order != 2:
print("Operator of order %d is not implemented!!!" % numeric_parameters.neumann_coupling_order)
quit()
fraction = left_domain.grid.h / right_domain.grid.h # normalize to right domain's meshwidth
p = np.array([-fraction, 0, 1.0])
c = compute_finite_difference_scheme_coeffs(evaluation_points=p, derivative_order=1)
# for u_stencil[1] we have to use the left_domain's continuous representation, because the right_domain's
# representation is constant in time. This degrades the order to 1 for a irregular mesh.
u_stencil = [
u_dirichlet_continuous_m2,
u_dirichlet_continuous_m1,
u_dirichlet_continuous_p1
]
# compute continuous representation for Neumann BC
u_neumann_continuous = lambda x: 1.0/right_domain.grid.h * (u_stencil[0](x) * c[0] + u_stencil[1](x) * c[1] + u_stencil[2](x) * c[2])
# update solution
left_domain.update_u(u_left_new)
right_domain.update_u(u_right_new)
# update coupling variables
left_domain.right_BC["neumann"] = u_neumann_continuous(t1)
right_domain.left_BC["dirichlet"] = u_dirichlet_continuous_m1(t1)
return True
class ExplicitPredictorCoupling(CouplingScheme):
"""
predictor coupling using a predictor scheme for the coupled participants
"""
name = "Explicit Predictor Coupling"
def __init__(self):
super(ExplicitPredictorCoupling, self).__init__()
def perform(self, t0, tau, left_domain, right_domain):
"""
@type left_domain Domain
@type right_domain Domain
:param t0:
"""
# enforce boundary conditions
left_domain.u[0] = left_domain.left_BC["dirichlet"]
right_domain.u[-1] = right_domain.right_BC["dirichlet"]
# get coupling boundary conditions for left participant
u_neumann_coupled = left_domain.right_BC["neumann"]
u_neumann_coupled_predicted = u_neumann_coupled # just initialize
u_dirichlet_coupled = left_domain.u[-1]
for i in range(2):
# operator for left participant
# f(u,t_n) with boundary conditions from this timestep
A_left, R_left = second_derivative_matrix(left_domain.grid, dirichlet_l=left_domain.left_BC["dirichlet"], neumann_r=u_neumann_coupled)
A_left_predicted, R_left_predicted = second_derivative_matrix(left_domain.grid, dirichlet_l=left_domain.left_BC["dirichlet"], neumann_r=u_neumann_coupled_predicted)
# use explicit coupling variables and predicted ones
left_domain.time_integration_scheme.set_rhs(A_left, R_left, 0)
left_domain.time_integration_scheme.set_rhs(A_left_predicted, R_left_predicted, 1)
# time stepping
u_left = left_domain.time_integration_scheme.do_step(left_domain.u, tau)
u_left_predicted = left_domain.time_integration_scheme.up
# get coupling boundary conditions for right participant
# u_dirichlet_coupled = u_left[-1]
u_dirichlet_coupled_predicted = u_left_predicted[-1]
# operator for right participant
A_right, R_right = second_derivative_matrix(right_domain.grid, dirichlet_l=u_dirichlet_coupled, dirichlet_r=right_domain.right_BC["dirichlet"])
A_right_predicted, R_right_predicted = second_derivative_matrix(right_domain.grid, dirichlet_l=u_dirichlet_coupled_predicted, dirichlet_r=right_domain.right_BC["dirichlet"])
# use explicit coupling variables and predicted ones
right_domain.time_integration_scheme.set_rhs(A_right, R_right, 0)
right_domain.time_integration_scheme.set_rhs(A_right_predicted, R_right_predicted, 1)
# time stepping
u_right = right_domain.time_integration_scheme.do_step(right_domain.u, tau)
u_right_predicted = right_domain.time_integration_scheme.up
# set dirichlet BC at coupling interface
u_right[0] = u_dirichlet_coupled
u_right_predicted[0] = u_dirichlet_coupled_predicted
# set neumann BC at coupling interface
u_neumann_coupled_predicted = estimate_coupling_neumann_BC(left_domain, u_left_predicted, right_domain, u_right_predicted) # computed with finite differences
u_dirichlet_coupled = u_left[-1]
u_right[0] = u_dirichlet_coupled
left_domain.update_u(u_left)
right_domain.update_u(u_right)
left_domain.right_BC["neumann"] = u_neumann_coupled
right_domain.left_BC["dirichlet"] = u_dirichlet_coupled
return True
class SemiImplicitExplicitCoupling(CouplingScheme):
"""
coupling scheme using a combination of explicit and implicit coupling
"""
name = "Semi Implicit Explicit Coupling"
def __init__(self):
super(SemiImplicitExplicitCoupling, self).__init__()
def perform(self, t0, tau, left_domain, right_domain):
"""
@type left_domain Domain
@type right_domain Domain
:param t0:
"""
residual = np.inf
tol = numeric_parameters.fixed_point_tol
n_steps_max = numeric_parameters.n_max_fixed_point_iterations
n_steps = 0
# f(u,t_n-1) with boundary conditions from last timestep
A_left, R_left = second_derivative_matrix(left_domain.grid, dirichlet_l=left_domain.left_BC["dirichlet"], neumann_r=left_domain.right_BC["neumann"])
# f(v,t_n-1)
A_right, R_right = second_derivative_matrix(right_domain.grid, dirichlet_l=right_domain.left_BC["dirichlet"], dirichlet_r=right_domain.right_BC["dirichlet"])
# use boundary conditions of t_n-1 as initial guess for t_n
u_neumann_coupled = left_domain.right_BC["neumann"]
u_dirichlet_coupled = right_domain.left_BC["dirichlet"]
# enforce boundary conditions
left_domain.u[0] = left_domain.left_BC["dirichlet"]
right_domain.u[-1] = right_domain.right_BC["dirichlet"]
# set rhs at t0 constant for all fixed point iterations
left_domain.time_integration_scheme.set_rhs(A_left, R_left, 0)
right_domain.time_integration_scheme.set_rhs(A_right, R_right, 0)
# start fixed point iteration for determining boundary conditions for t_n
while abs(residual) > tol and n_steps < n_steps_max:
# LEFT
for i in range(left_domain.time_integration_scheme.evaluation_times.shape[0]):
# operator for left participant
evaluation_time = left_domain.time_integration_scheme.evaluation_times[i]
u_neumann_interpolated = (1-evaluation_time) * left_domain.right_BC["neumann"] + evaluation_time * u_neumann_coupled
A_left, R_left = second_derivative_matrix(left_domain.grid, dirichlet_l=left_domain.left_BC["dirichlet"], neumann_r=u_neumann_interpolated)
# use most recent coupling variables for all
left_domain.time_integration_scheme.set_rhs(A_left, R_left, i)
# time stepping
u_left_new = left_domain.time_integration_scheme.do_step(left_domain.u, tau)
# update dirichlet BC at coupling interface
u_dirichlet_coupled = u_left_new[-1]
# RIGHT
for i in range(right_domain.time_integration_scheme.evaluation_times.shape[0]):
# operator for right participant
evaluation_time = right_domain.time_integration_scheme.evaluation_times[i]
u_dirichlet_interpolated = (1-evaluation_time) * right_domain.left_BC["dirichlet"] + evaluation_time * u_dirichlet_coupled
A_right, R_right = second_derivative_matrix(right_domain.grid, dirichlet_l=u_dirichlet_interpolated, dirichlet_r=right_domain.right_BC["dirichlet"])
# use most recent coupling variables for all
right_domain.time_integration_scheme.set_rhs(A_right, R_right, i)
# time stepping
u_right_new = right_domain.time_integration_scheme.do_step(right_domain.u, tau)
# set dirichlet BC at coupling interface
u_right_new[0] = u_dirichlet_coupled
u_neumann_coupled__ = estimate_coupling_neumann_BC(left_domain, u_left_new, right_domain, u_right_new)
residual = u_neumann_coupled__ - u_neumann_coupled
# Aitken's Underrelaxation
omega = .5 # todo just a random number currently
u_neumann_coupled += omega * residual
n_steps += 1
if n_steps == n_steps_max:
print("maximum number of steps exceeded!")
return False
# update solution
left_domain.update_u(u_left_new)
right_domain.update_u(u_right_new)
# update coupling variables
left_domain.right_BC["neumann"] = u_neumann_coupled
right_domain.left_BC["dirichlet"] = u_dirichlet_coupled
return True
class StrangSplittingCoupling(CouplingScheme):
"""
coupling using Strang splitting
"""
name = "Strang Splitting Coupling"
def __init__(self):
super(StrangSplittingCoupling, self).__init__()
def perform(self, t0, tau, left_domain, right_domain):
"""
uses Strang splitting for explicit coupling
@type left_domain Domain
@type right_domain Domain
:param t0:
:param tau:
:param left_domain:
:param right_domain:
:return:
"""
"""
@type left_domain Domain
@type right_domain Domain
"""
# enforce boundary conditions
left_domain.u[0] = left_domain.left_BC["dirichlet"]
right_domain.u[-1] = right_domain.right_BC["dirichlet"]
# get coupling boundary conditions for left participant
u_neumann_coupled = left_domain.right_BC["neumann"]
# operator for left participant
# f(u,t_n) with boundary conditions from this timestep
A_left, R_left = second_derivative_matrix(left_domain.grid, dirichlet_l=left_domain.left_BC["dirichlet"], neumann_r=u_neumann_coupled)
# always use most recent coupling variables for all substeps -> fully explicit
left_domain.time_integration_scheme.set_all_rhs(A_left, R_left)
# time stepping -> only perform a half step f_1, STRANG SPLITTING APPROACH
u_left_mid = left_domain.time_integration_scheme.do_step(left_domain.u, .5 * tau)
# get coupling boundary conditions for right participant
u_dirichlet_coupled = u_left_mid[-1]
# operator for right participant
A_right, R_right = second_derivative_matrix(right_domain.grid, dirichlet_l=u_dirichlet_coupled, dirichlet_r=right_domain.right_BC["dirichlet"])
# always use most recent coupling variables for all substeps -> fully explicit
right_domain.time_integration_scheme.set_all_rhs(A_right, R_right)
# time stepping -> full step f_2, STRANG SPLITTING APPROACH
u_right = right_domain.time_integration_scheme.do_step(right_domain.u, tau)
# set dirichlet BC at coupling interface
u_right[0] = u_dirichlet_coupled
right_domain.u[0] = u_dirichlet_coupled # the new dirichlet boundary condition has to be enforced for all times!
# get coupling boundary conditions for left participant
u_neumann_coupled = estimate_coupling_neumann_BC(left_domain, u_left_mid, right_domain, .5*(right_domain.u+u_right))
# updated operator for left participant
# f(u,t_n) with boundary conditions from STRANG SPLITTING STEP
A_left, R_left = second_derivative_matrix(left_domain.grid, dirichlet_l=left_domain.left_BC["dirichlet"], neumann_r=u_neumann_coupled)
# always use most recent coupling variables for all substeps -> fully explicit
left_domain.time_integration_scheme.set_all_rhs(A_left, R_left)
# time stepping -> do second half step f_1, STRANG SPLITTING APPROACH
u_left = left_domain.time_integration_scheme.do_step(u_left_mid, .5 * tau)
u_dirichlet_coupled = u_left[-1]
u_right[0] = u_dirichlet_coupled
# update u
left_domain.update_u(u_left)
right_domain.update_u(u_right)
# update coupling variables
left_domain.right_BC["neumann"] = u_neumann_coupled
right_domain.left_BC["dirichlet"] = u_dirichlet_coupled
return True
class MonolithicScheme(CouplingScheme):
"""
monolithic scheme for solving an equation without coupling
"""
name = "Monolithic Approach"
def __init__(self):
super(MonolithicScheme, self).__init__()
def perform(self, t0, tau, domain, dummy):
"""
@type domain Domain
:param t0:
"""
A, R = second_derivative_matrix(domain.grid, dirichlet_l=domain.left_BC['dirichlet'], dirichlet_r=domain.right_BC['dirichlet'])
domain.time_integration_scheme.set_all_rhs(A, R)
u = domain.time_integration_scheme.do_step(domain.u, tau)
domain.update_u(u)
return True