-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
273 lines (200 loc) · 7.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 设置字体为 Times New Roman
plt.rcParams["font.family"] = "Times New Roman"
epsilon = 50 # Learning rate 学习率
momentum = 0.7 # Momentum parameter 动量优化参数
epoch = 1 # Initial epoch 初始化epoch
maxepoch = 50 # Total number of training epochs 总训练次数
err_train = np.zeros(maxepoch) # Training error 训练误差
err_valid = np.zeros(maxepoch) # Validation error 验证误差
err_random = np.zeros(maxepoch) # Random error 随机误差
num_feat = 10 # Number of latent factors 隐因子数量
N = 10000 # Number of training triplets per epoch 每次训练三元组的数量
# In[2]:
train_data = pd.read_csv(
"data/training.txt", sep=" ", header=None, names=["user_id", "item_id", "click"]
)
train_data["click"] = 5
rating = train_data["click"]
movie = train_data["item_id"]
user = train_data["user_id"]
data_num = len(rating)
movie_num = movie.nunique() # 电影的数量
user_num = user.nunique() # 用户的数量
# In[3]:
# 负采样
negative_sample = np.random.choice(user_num * movie_num, data_num, replace=True)
record_user = []
record_movie = []
record_rating = [1] * data_num
for i in negative_sample:
movie_i = i // user_num
user_i = i % user_num + 1
record_user.append(user_i)
record_movie.append(movie_i)
negative_data = pd.DataFrame(
{"user_id": record_user, "item_id": record_movie, "click": record_rating}
)
# In[4]:
# 数据结合
data = pd.concat([train_data, negative_data])
rating = data["click"]
movie = data["item_id"]
user = data["user_id"]
data_num = len(rating)
movie_num = movie.max()
user_num = user.max()
data = data.sample(frac=1).reset_index(drop=True) # 打乱数据集
# In[5]:
# 稀疏度
sparsity = data_num / (movie_num * user_num)
print(f"Sparsity: {sparsity:.6f}")
# In[6]:
train_num = 80000
train_vec = data.iloc[:train_num]
probe_vec = data.iloc[train_num:84000]
mean_rating = train_vec["click"].mean()
pairs_tr = len(train_vec)
pairs_pr = len(probe_vec)
numbatches = 8
num_m = movie_num
num_p = user_num
# In[7]:
# 初始化矩阵参数
w1_M1 = 0.1 * np.random.rand(num_m, num_feat) # 电影特征矩阵,维度为(num_m, num_feat)
w1_P1 = 0.1 * np.random.rand(num_p, num_feat) # 用户特征矩阵,维度为(num_p, num_feat)
w1_M1_inc = np.zeros((num_m, num_feat)) # 电影特征矩阵的增量,用于动量优化,初始化为零矩阵
w1_P1_inc = np.zeros((num_p, num_feat)) # 用户特征矩阵的增量,用于动量优化,初始化为零矩阵
# In[8]:
# 训练模型
for epoch in range(maxepoch):
for batch in range(numbatches):
# 计算当前批次的起始和结束索引
start = batch * N
end = start + N
if end > pairs_tr: # 防止越界
end = pairs_tr
# 提取当前批次的用户和物品ID,并将它们的索引减1以匹配矩阵
aa_p = train_vec.iloc[start:end]["user_id"].values - 1
aa_m = train_vec.iloc[start:end]["item_id"].values - 1
rating = train_vec.iloc[start:end]["click"].values.astype(float) # 确保rating为浮点数
rating -= mean_rating # 减去平均评分
# 计算预测评分
pred_out = np.sum(w1_M1[aa_m] * w1_P1[aa_p], axis=1)
f = np.sum((pred_out - rating) ** 2) # 计算误差平方和
# 计算梯度
IO = 2 * (pred_out - rating)
IO = np.tile(IO[:, None], num_feat) # 将IO扩展到特征数量的维度
Ix_m = IO * w1_P1[aa_p] # 对电影特征的梯度
Ix_p = IO * w1_M1[aa_m] # 对用户特征的梯度
# 初始化梯度增量矩阵
dw1_M1 = np.zeros((movie_num, num_feat))
dw1_P1 = np.zeros((user_num, num_feat))
# 累加每个样本的梯度
for ii in range(N):
dw1_M1[aa_m[ii]] += Ix_m[ii]
dw1_P1[aa_p[ii]] += Ix_p[ii]
# 更新特征矩阵
w1_M1_inc = momentum * w1_M1_inc + epsilon * dw1_M1 / N
w1_M1 -= w1_M1_inc
w1_P1_inc = momentum * w1_P1_inc + epsilon * dw1_P1 / N
w1_P1 -= w1_P1_inc
# 计算训练误差
pred_out = np.sum(w1_M1[aa_m] * w1_P1[aa_p], axis=1)
f_s = np.sum((pred_out - rating) ** 2)
err_train[epoch] = np.sqrt(f_s / N) # 计算训练集上的RMSE
# 在验证集上进行预测并计算误差
aa_p = probe_vec["user_id"].values - 1
aa_m = probe_vec["item_id"].values - 1
rating = probe_vec["click"].values
pred_out = np.sum(w1_M1[aa_m] * w1_P1[aa_p], axis=1) + mean_rating
pred_out = np.clip(pred_out, 1, 5) # 将预测评分限制在1到5之间
err_valid[epoch] = np.sqrt(np.sum((pred_out - rating) ** 2) / pairs_pr) # 计算验证集上的RMSE
# 打印每个epoch的训练和验证误差
print(f"Epoch {epoch + 1}/{maxepoch}, Train RMSE: {err_train[epoch]:.4f}, Test RMSE: {err_valid[epoch]:.4f}")
# 绘制Loss曲线
plt.plot(range(1, maxepoch + 1), err_train, label="Train Error", color="blue")
plt.plot(range(1, maxepoch + 1), err_valid, label="Validation Error", color="red")
plt.xlabel("Epoch")
plt.ylabel("Error")
plt.legend()
plt.show()
# In[9]:
# 定义常量
j = 10
# In[10]:
# 计算Precision@10
precisions = []
for i in range(user_num):
user_i_rating_real = probe_vec[probe_vec["user_id"] == i + 1]
user_i_rating_real = user_i_rating_real.sort_values(by="click", ascending=False)
user_i_rating = (
np.dot(w1_P1[i, :], w1_M1[user_i_rating_real["item_id"].values - 1].T)
+ mean_rating
)
if len(user_i_rating_real) > j:
top_j_pred = np.argsort(-user_i_rating)[:j]
precision = np.sum(np.isin(top_j_pred, np.arange(j))) / j
precisions.append(precision)
else:
ti = np.sum(user_i_rating_real["click"] >= 4)
if ti != 0:
precision = np.sum(user_i_rating[:ti] >= 4) / ti
precisions.append(precision)
Pre = np.mean(precisions)
# In[11]:
# 计算Recall@10
recalls = []
for i in range(user_num):
user_i_rating_real = probe_vec[probe_vec["user_id"] == i + 1]
user_i_rating_real = user_i_rating_real.sort_values(by="click", ascending=False)
user_i_rating = (
np.dot(w1_P1[i, :], w1_M1[user_i_rating_real["item_id"].values - 1].T)
+ mean_rating
)
if len(user_i_rating_real) > j:
user_i_rating[user_i_rating < 4] = 0
user_i_rating[user_i_rating >= 4] = 1
ti = np.sum(user_i_rating)
if ti != 0:
bigerthan4 = np.sum(user_i_rating_real["click"] >= 4)
tinri = np.sum(user_i_rating[:bigerthan4])
recall = tinri / ti
recalls.append(recall)
else:
ti = np.sum(user_i_rating_real["click"] >= 4)
if ti != 0:
recall = np.sum(user_i_rating[:ti] >= 4) / ti
recalls.append(recall)
Re = np.mean(recalls)
# In[12]:
print(f"Recall@10: {Re:.4f}, Precision@10: {Pre:.4f}")
# In[13]:
# 读取测试集数据
test = pd.read_csv("data/test.txt", header=None, sep=" ")
test.columns = ["user_id"] # 设置列名为'user_id'
# 定义常量
k = 10 # 推荐的数量
# 初始化变量
record = [] # 存储推荐结果的列表
# 对每个测试用户进行推荐
for i in test["user_id"]:
user_i_rating = np.dot(w1_P1[i - 1, :], w1_M1.T) + mean_rating
used = data[data["user_id"] == i]["item_id"].values - 1
user_i_rating[used] = 0 # 将已评分的电影的评分设为0
top_k_movies = np.argsort(user_i_rating)[-k:][::-1] + 1
record.append((i, top_k_movies)) # 将用户ID和推荐结果加入列表
# 将推荐结果转换为指定格式的字符串
result_lines = []
for user_id, movies in record:
movies_str = ",".join(map(str, movies))
result_lines.append(f"{user_id}: {movies_str}")
# 将结果保存到TXT文件
with open("data/result.txt", "w") as file:
for line in result_lines:
file.write(line + "\n")