-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognizer.py
36 lines (25 loc) · 993 Bytes
/
face_recognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
import cv2 as cv
haar_cascade = cv.CascadeClassifier('haar_face.xml')
people = ['Ben Afflek', 'Elton John', 'Jerry Seinfield', 'Madonna', 'Mindy Kaling','Unknown']
face_recognizer = cv.face.LBPHFaceRecognizer_create()
face_recognizer.read('face_trained.yml')
img = cv.imread(r'E:\OpenCV\Lab\Faces\val\ben_afflek\2.jpg')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow('Person', gray)
# Detect the face in the image
faces_rect = haar_cascade.detectMultiScale(gray, 1.1, 4)
flag =1
for (x,y,w,h) in faces_rect:
faces_roi = gray[y:y+h,x:x+w]
label, loss = face_recognizer.predict(faces_roi)
print(f'Label = {people[label]} with a loss of {loss}')
if loss>100:
flag=0
label=5
cv.putText(img, str(people[label]), (20,20), cv.FONT_HERSHEY_COMPLEX, 1.0, (0,255,0), thickness=2)
cv.rectangle(img, (x,y), (x+w,y+h), (0,255,0), thickness=2)
if(flag==0):
print("Not in database")
cv.imshow('Detected Face', img)
cv.waitKey(0)