A curated list of Gait Recognition and related area resources
The repository is built and maintained by Yang Fu.
Please feel free to send me pull requests or email (aleeyanger@gmail.com) to add links.
Update Four papers
-
It Takes Two: Accurate Gait Recognition in the Wild via Cross-granularity Alignment - J. Zheng et al. (MM2024)
-
GLGait: A Global-Local Temporal Receptive Field Network for Gait Recognition in the Wild - G. Peng et al. (MM2024)
-
AerialGait: Bridging Aerial and Ground Views for Gait Recognition - A. Li et al. (MM2024)
-
Gait Recognition in Large-scale Free Environment via Single LiDAR - X. Han et al. (MM2024✨ Oral Paper ✨)
- Appearance based Gait Recognition
- Model based Gait Recognition
- Gait Survey
- Gait Recognition Dataset and Evaluation
- Tutorial
- Competition
- Framework
Arxiv
- OpenGait: A Comprehensive Benchmark Study for Gait Recognition towards Better Practicality - C. Fan et al. (OpenGait)
- GaitSTR: Gait Recognition with Sequential Two-stream Refinement - W. Zheng et al.
- Cross-Modality Gait Recognition: Bridging LiDAR and Camera Modalities for Human Identification - R. Wang et al.
- GaitPoint+: A Gait Recognition Network Incorporating Point Cloud Analysis and Recycling - R. Wang et al.
- The Paradox of Motion: Evidence for Spurious Correlations in Skeleton-based Gait Recognition Models - A. Catruna et al.
MM2024
- It Takes Two: Accurate Gait Recognition in the Wild via Cross-granularity Alignment - J. Zheng et al.
- GLGait: A Global-Local Temporal Receptive Field Network for Gait Recognition in the Wild - G. Peng et al.
- AerialGait: Bridging Aerial and Ground Views for Gait Recognition - A. Li et al.
- Gait Recognition in Large-scale Free Environment via Single LiDAR - X. Han et al. ✨ Oral Paper ✨
ECCV2024
- Open-Set Biometrics: Beyond Good Closed-Set Models - Y. Su et al.
- Causality-inspired Discriminative Feature Learning in Triple Domains for Gait Recognition - H. Xiong et al.
- Camera-LiDAR Cross-modality Gait Recognition - W. Guo et al.
CVPR2024
- BigGait: Learning Gait Representation You Want by Large Vision Models - D. Ye et al. (BigGait)
- Learning Visual Prompt for Gait Recognition - K. Ma et al.
TIP2024
- CLASH: Complementary Learning with Neural Architecture Search for Gait Recognition - H. Dou et al. (CLASH)
TCSVT2024
- Cloth-Imbalanced Gait Recognition via Hallucination - S. Hou et al.
AAAI2024
- SkeletonGait: Gait Recognition Using Skeleton Maps - C. Fan et al. (⚡SkeletonGait [code])
- HybridGait: A Benchmark for Spatial-Temporal Cloth-Changing Gait Recognition with Hybrid Explorations - Y. Dong et al.
- QAGait: Revisit Gait Recognition From a Quality Perspective - Z. Wang et al.
WACV2024
- You Can Run but not Hide: Improving Gait Recognition with Intrinsic Occlusion Type Awareness - A. Gupta et al. ✨ Oral Paper ✨
- Watch Where You Head: A View-biased Domain Gap in Gait Recognition and Unsupervised Adaptation - G. Habib et al.
IJCB2023
- A Multi-Stage Adaptive Feature Fusion Neural Network for Multimodal Gait Recognition - S. Zou et.al. (⚡MSAFF [code])
MM2023
- Causal Intervention for Sparse-View Gait Recognition - J. Wang et al.
- LandmarkGait: Intrinsic Human Parsing for Gait Recognition - Z. Wang et al. (⚡LandmarkGait [code])
- Parsing is All You Need for Accurate Gait Recognition in the Wild - J. Zheng et al. (⚡ParsingGait [code]) ✨ Oral Paper ✨
TMM2023
- Gait Recognition with Drones: A Benchmark - A. Li et al.
- Gait Recognition With Multi-Level Skeleton-Guided Refinement - R. Wang et al.
- GaitParsing: Human Semantic Parsing for Gait Recognition - Z. Wang et al.
ICCV2023
- Fine-grained Unsupervised Domain Adaptation for Gait Recognition - K. Ma et al.
- DyGait: Exploiting Dynamic Representations for High-performance Gait Recognition - M. Wang et al.
- Hierarchical Spatio-Temporal Representation Learning for Gait Recognition - L. Wang et al.
- Occluded Gait Recognition via Silhouette Registration Guided by Automated Occlusion Degree Estimation - C. Xu et al.
CVPR2023
-
Multi-Modal Gait Recognition via Effective Spatial-Temporal Feature Fusion - Y. Cui et al.
-
An In-Depth Exploration of Person Re-Identification and Gait Recognition in Cloth-Changing Conditions - W. Li et al.(CCPG)
-
GaitGCI: Generative Counterfactual Intervention for Gait Recognition - H. Dou et al. (GaitGCI)
-
Dynamic Aggregated Network for Gait Recognition - K. Ma et al. (DANet)
-
LIDAR GAIT: Benchmarking 3D Gait Recognition with Point Clouds - C. Shen et al. (⚡LidarGait [code])
WACV2023
- Gait Recognition Using 3-D Human Body Shape Inference - H. Zhu et al.
PR2023
TIFS2023
-
Occlusion-aware Human Mesh Model-based Gait Recognition - C. Xu et al.
-
GaitReload: A Reloading Framework for Defending Against On-Manifold Adversarial Gait Sequences - P. Du et al.
TPAMI2023
- Learning Gait Representation from Massive Unlabelled Walking Videos: A Benchmark - C. Fan et al. (⚡GaitSSB [code])
Arxiv2023
-
HiH: A Multi-modal Hierarchy in Hierarchy Network for Unconstrained Gait Recognition - L. Wang et al.
-
POISE: Pose Guided Human Silhouette Extraction under Occlusions - A. Dutta et al.
-
Free Lunch for Gait Recognition: A Novel Relation Descriptor - J. Wang et al.
-
TriGait: Aligning and Fusing Skeleton and Silhouette Gait Data via a Tri-Branch Network - Y. Sun et al.
-
GaitSADA: Self-Aligned Domain Adaptation for mmWave Gait Recognition -E. Pinyoanuntapong et al.
-
GaitEditer: Attribute Editing for Gait Representation Learning - D. Ye et al.
-
GaitRef: Gait Recognition with Refined Sequential Skeletons - H. Zhu et al.
-
Unsupervised Gait Recognition with Selective Fusion - X. Ren et al.
-
Exploring Deep Models for Practical Gait Recognition - C. Fan et al.
CVPR2022
-
Lagrange Motion Analysis and View Embeddings for Improved Gait Recognition - T. Chai et al. (⚡LagrangeGait [Official Code])
-
Gait Recognition in the Wild with Dense 3D Representations and A Benchmark - J. Zheng et al. (⚡Gait3D [Official Code])
ECCV2022
-
Metagait: Learning to learn an omni sample adaptive representation for gait recognition - H. Dou et al. (⚡MetaGait [Official Code])
-
GaitEdge: Beyond Plain End-to-end Gait Recognition for Better Practicality - J. Liang et al. (⚡GaitEdge [OpenGait])
MM'22
-
Generalized inter-class loss for gait recognition - W. Yu et al.
-
Gait recognition in the wild with multi-hop temporal switch - J. Zheng et al. (MTSGait)
ICIP2022
- GAITTAKE: Gait recognition by temporal attention and keypoint-guided embedding - HM. Hsu et al.(GaitTake)
TBIOM2022
-
Gait Pyramid Attention Network: Toward Silhouette Semantic Relation Learning for Gait Recognition - J. Chen et al.
-
STAR: Spatio-Temporal Augmented Relation Network for Gait Recognition - X. Huang et al.
ICME2022
- Decomposing Identity and View for Cross-View Gait Recognition - X. Zhai et al.
- GaitTransformer: Multiple-Temporal-Scale Transformer for Cross-View Gait Recognition -Y. Cut et al.
ACCV2022
- GaitStrip: Gait Recognition via Effective Strip-based Feature Representations and Multi-Level Framework - M. Wang et al.
ICPR2022
- FedGait: A Benchmark for Federated Gait Recognition - Z. Li et al.
- Interpretable Gait Recognition by Granger Causality - M. Balazia et al.
TIP2022
TMM2022
- Improving Disentangled Representation Learning for Gait Recognition using Group Supervision - L. Yao et al.
TCSVT2022
- Enhanced Spatial-Temporal Salience for Cross-view Gait Recognition - T. Huang et al.
TNNLS2022
- Gait Quality Aware Network: Toward the Interpretability of Silhouette-Based Gait Recognition - S. Hou et al. (GQAN)
PR2022
- GaitSlice: A gait recognition model based on spatio-temporal slice features - H Li et al.
- A unified perspective of classification-based loss and distance-based loss for cross-view gait recognition - F. Han et al.
Arxiv2022
- LiCamGait: Gait Recognition in the Wild by Using LiDAR and Camera Multi-modal Visual Sensors - X. Han et al. (LiCamGait)
ICCV2021
-
3d local convolutional neural networks for gait recognition - Z. Huang et al. (⚡3DLocal [Official Code])
-
Context-sensitive temporal feature learning for gait recognition - X. Huang et al.(⚡CSTL[Official Code])
-
Gait recognition via effective global-local feature representation and local temporal aggregation - B. Lin et al. (⚡GaitGL [OpenGait])
-
Gait recognition in the wild: A benchmark - Z. Zhu et al.(⚡GREW [code])
CVPR2021
- Cross-view gait recognition with deep universal linear embeddings - S. Zhang et al.
ICIP2021
- Silhouette-based view-embeddings for gait recognition under multiple views - T. Chai et al.(⚡Vi-GaitGL [code])
BMVC2021
- Gaitmask: Mask-based model for gait recognition - B. Lin et al.
ICPR2021
- Part-based collaborative spatio-temporal feature learning for cloth-changing gait recognition - L. Yao et al.
- Gait recognition using multi-scale partial representation transformation with capsules - A Sepas-Moghaddam et al.
TPAMI2021
TMM2021
- Associated spatio-temporal capsule network for gait recognition - A. Zhao et al.
TIP2021
- Multi-view gait image generation for cross-view gait recognition - X. Chen et al.
TBIOM2021
- Set residual network for silhouette-based gait recognition - S. You et al.
CVPR2020
-
Gaitpart: Temporal part-based model for gait recognition - C. Fan et al. (⚡GaitPart [OpenGait])
-
Gait recognition via semi-supervised disentangled representation learning to identity and covariate features - X. Li et al.
ECCV2020
-
Gait lateral network: Learning discriminative and compact representations for gait recognition - S. You et al. (⚡GLN [OpenGait])
-
Gait recognition from a single image using a phase-aware gait cycle reconstruction network - C. Xu et al.
MM'20
- Gait recognition with multiple-temporal-scale 3d convolutional neural network - B. Lin et al. (MT3D)
AAAI2020
ACCV2020
- End-to-end model-based gait recognition - X. Li et al.
TPAMI2020
- On learning disentangled representations for gait recognition - Z. Zhang et al., TPAMI2020 (GaitNet)
TBIOM2020
-
View-invariant gait recognition with attentive recurrent learning of partial representations - A Sepas-Moghaddam et al.
-
Performance evaluation of model-based gait on multi-view very large population database with pose sequences - W. An et al.
TIP2020
- Condition-aware comparison scheme for gait recognition - H. Wu et al.
TCSVT2020
PR2020
- Gait recognition invariant to carried objects using alpha blending generative adversarial networks - X. Li et al.
IJCB2020
-
Dense-view geis set: View space covering for gait recognition based on dense-view gan - R. Liao et al.
-
DeformGait: Gait Recognition under Posture Changes using Deformation Patterns between Gait Feature Pairs - Xu. Chi et al.
AAAI2019
- Gaitset: Regarding gait as a set for cross-view gait recognition - H. Chao et al., AAAI2019 (⚡ GaitSet [Official Code, OpenGait] )
CVPR2019
-
Gait recognition via disentangled representation learning - Z. Zhang et al. ✨ Oral Paper ✨
-
EV-gait: Event-based robust gait recognition using dynamic vision sensors - Y. Wang et al.
-
Learning joint gait representation via quintuplet loss minimization - K. Zhang et al.
ICIP2019
- Gait energy image restoration using generative adversarial networks - M. Babaee et al.
TIP2019
- Cross-view gait recognition by discriminative feature learning - Y. Zhang et al.
TMM2019
- Attentive spatial–temporal summary networks for feature learning in irregular gait recognition - S. Li et al.
TCSVT2019
PR2019
- Gaitnet: An end-to-end network for gait based human identification - C. Song et al.
- A comprehensive study on gait biometrics using a joint CNN-based method - Y. Zhang et al.
TIFS2019
- Joint intensity transformer network for gait recognition robust against clothing and carrying status - X. Li et al.
TIFS2018
CVPR2017
-
Joint intensity and spatial metric learning for robust gait recognition - Y. Makihara et al.
-
Gaitgan: Invariant gait feature extraction using generative adversarial networks - S. Yu et al., CVPRW2017
TPAMI2017
- Multi-gait recognition based on attribute discovery - X. Chen et al.
TCSVT2017
- On input/output architectures for convolutional neural network-based cross-view gait recognition - N. Takemura et al.
ICPR2016
- Learning effective gait features using LSTM - Y. Feng et al.
- Multi-view gait recognition using 3D convolutional neural networks - T. Wolf et al.
TPAMI2016
PR2016
- Complete canonical correlation analysis with application to multi-view gait recognition - X. Xing et al.
ICB2016
- Geinet: View-invariant gait recognition using a convolutional neural network -K. Shiraga et al. (GEINet)
TIFS2014
- Recognizing gaits on spatio-temporal feature domain - W. Kusakunniran et al.
TIP2014
- Recognizing gaits across views through correlated motion co-clustering - W.Kusakunniran et al.
PR2014
- Uncooperative gait recognition by learning to rank - R.l Martín-Félez et al.
TIFS2013
- A new view-invariant feature for cross-view gait recognition - W. Kusakunniran et al.
TCSVT2012
- Gait recognition under various viewing angles based on correlated motion regression - W. Kusakunniran et al.
ICIP2011
- Robust view transformation model for gait recognition - S. Zheng et al.
TPAMI2011
TIP2011
PR2011
BMVC2010
- Cross view gait recognition using correlation strength. - K. Bashir et al.
ECCV2008
PR2008
- Extracting a diagnostic gait signature - H. Lakany et al.
TIFS2007
- Gait recognition using compact feature extraction transforms and depth information - D. Loannidis et al.
Gait&posture2007
- Walking speed influences on gait cycle variability - K. Jordan et al.
ECCV2006
- Gait recognition using a view transformation model in the frequency domain - Y. Makihara et al.
ICPR2006
- A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition - S. You et al.
TPAMI2006
- Individual recognition using gait energy image - J. Han et al.
TCSVT2004
- Fusion of static and dynamic body biometrics for gait recognition - L. Wang et al.
TPAMI2003
- Silhouette analysis-based gait recognition for human identification - L. Wang et al.
CVPR2001
- Gait recognition from time-normalized joint-angle trajectories in the walking plane - R. Tanawongsuwan et al.
ICCV2023
- GPGait: Generalized Pose-based Gait Recognition - Y. Fu et al. ((⚡GPGait [code]))
- Physics-Augmented Autoencoder for 3D Skeleton-Based Gait Recognition - H. Guo et al.
IEEE J-STSP2023
- Learning Temporal Attention based Keypoint-guided Embedding for Gait Recognition - H. Hung-Min, et al.(GaitTAKE)
TIP2023
Arxiv2023
CVPR2022
- Towards a Deeper Understanding of Skeleton-based Gait Recognition - T. Teepe et al., CVPRW2022 (⚡GaitGraph2 [code])
Arxiv2022
- GaitMixer: skeleton-based gait representation learning via wide-spectrum multi-axial mixer - E. Pinyoanuntapong (⚡GaitMixer [code])
- Spatial Transformer Network on Skeleton-based Gait Recognition - C. Zhang et al. (⚡GaitTR [code])
TMM2022
- A Strong and Robust Skeleton-based Gait Recognition Method with Gait Periodicity Priors - N. Li et al.
PR2022
TBIOM2022
- Multi-view large population gait database with human meshes and its performance evaluation - X. Li et al.
ICIP2021
- Gaitgraph: Graph convolutional network for skeleton-based gait recognition - T. Teepe et al. (⚡GaitGraph [code])
ICCV2021
- End-to-end Model-based Gait Recognition using Synchronized Multi-view Pose Constraint - X. Li et al., ICCVW2021
ICME2021
- Gait Identification Based on Human Skeleton with Pairwise Graph Convolutional Network - K. Su et al.
TMM2021
- Gait Recognition based on Local Graphical Skeleton Descriptor with Pairwise Similarity Network - K. Xu et al.
IJCB2021
PR2021
- Multi-task learning for gait-based identity recognition and emotion recognition using attention enhanced temporal graph convolutional network - W. Shang et al.
CVPR2020
- A geometric convnet on 3d shape manifold for gait recognition - N. Hosni et al., CVPRW2020
PR2020
- A model-based gait recognition method with body pose and human prior knowledge - R. Liao et al. (⚡PoseGait [code])
IJCB2020
ICIP2019
- Glidar3dj: a view-invariant gait identification via flash lidar data correction - N. Sadeghzadehyazdi et al.
TIFS2019
- Skeleton-based gait recognition via robust frame-level matching -S. Choi et al.
TIFS2017
- Human identification from freestyle walks using posture-based gait feature - N. Khamsemanan et al.
ICPR2016
- Learning effective gait features using LSTM -Y. Feng et al.
- A comprehensive survey on deep gait recognition: algorithms, datasets and challenges - C. Shen et al., Arxiv 2022
- Deep gait recognition: A survey - A. Sepas-Moghaddam et al., TPAMI2022
- A survey on gait recognition via wearable sensors - MD. Marsico et al., CSUR2019
- A survey on gait recognition - C. Wan et al., CSUR2018
- Biometric recognition by gait: A survey of modalities and features - P. Connor et al., CVIU2018
AAAI2024
- Cross-Covariate Gait Recognition: A Benchmark - S. Zou et al. (⚡CCRG [download])
-
Gait Recognition with Drones: A Benchmark - A. Li et al., TMM2023 (⚡DroneGait [download])
-
LIDAR GAIT: Benchmarking 3D Gait Recognition with Point Clouds - C. Shen et al., CVPR2023 (⚡SUSTech1K [download])
-
An In-Depth Exploration of Person Re-Identification and Gait Recognition in Cloth-Changing Conditions - W. Li et al. CVPR2023 (⚡CCPG [download])
-
Learning Gait Representation from Massive Unlabelled Walking Videos: A Benchmark - C. Fan et al. TPAMI2023 (⚡GaitLU-1M [download])
- Gait Recognition in the Wild with Dense 3D Representations and A Benchmark - J. Zheng et al., CVPR2022 (⚡Gait3D [download])
- CASIA-E: A Large Comprehensive Dataset for Gait Recognition - C. Song et al., TPAMI2022 (⚡CASIA-E [download])
- A Comprehensive Study on the Evaluation of Silhouette-based Gait Recognition - S. Hou et al., TBIOM 2022
- Multi-view large population gait database with human meshes and its performance evaluation - X. Li et al., TBIOM 2022 (⚡OUMVLP-Mesh [download])
- Front View Gait (FVG-B) Database - Y. Su et al., Univer Web (⚡FVG-B [download])
- LiCamGait: Gait Recognition in the Wild by Using LiDAR and Camera Multi-modal Visual Sensors - X. Han et al., Arxiv2022
- Gait recognition in the wild: A benchmark - Z. Zhu et al., ICCV2021(⚡GREW [download])
- Performance evaluation of model-based gait on multi-view very large population database with pose sequences - W. An et al., TBIOM2020 (⚡OUMVLP-Pose [download])
- EV-gait: Event-based robust gait recognition using dynamic vision sensors - Y. Wang et al., CVPR2019
- Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition - N. Takemura et al., IPSJ2018 (⚡OUMVLP [download])
- A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition - S. Yu et al., ICPR2006 (⚡CASIA-B [download])
- Soft Biometrics and Gait - M. Nixon, The IAPR/IEEE Winter School on Biometrics 2022 [pdf]
- Gait Recognition - Y. Yagi, The IAPR/IEEE Winter School on Biometrics 2021 [pdf]
- Human Gait Analysis - Y. Yagi, The IAPR/IEEE Winter School on Biometrics 2020 [pdf]
- Human Gait Analysis - Y. Yagi, The IAPR/IEEE Winter School on Biometrics 2019 [pdf]
- Gait and Soft Biometrics - M. Nixon, The IAPR/IEEE Winter School on Biometrics 2018 [pdf]
- Human Identification via Gait Recognition - L. Wang, The IAPR/IEEE Winter School on Biometrics 2017 [pdf][video]
✨Newest✨
The 5th International Competition on Human Identification at a Distance 2024 (HID2024)
Pytorch
-
OpenGait: Revisiting Gait Recognition Toward Better Practicality - C. Fan et al., CVPR2023 (⚡ OpenGait [Link]) ✨ Highlight Paper ✨
-
FastPoseGait - S. Meng et al. (⚡ FastPoseGait [Link])