forked from stochasticHydroTools/RigidMultiblobsWall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeneral_application_utils.py
670 lines (572 loc) · 23 KB
/
general_application_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
'''File with utilities for the scripts and functions in this project.'''
import logging
try:
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot
except ImportError:
pass
import numpy as np
import scipy.sparse.linalg as scspla
import os
import sys
import time
from functools import partial
from quaternion_integrator.quaternion import Quaternion
# from quaternion_integrator.quaternion import Quaternion
DT_STYLES = {} # Used for plotting different timesteps of MSD.
# Fake log-like class to redirect stdout to log file.
class StreamToLogger(object):
"""
Fake file-like stream object that redirects writes to a logger instance.
"""
def __init__(self, logger, log_level=logging.INFO):
self.logger = logger
self.log_level = log_level
self.linebuf = ''
def write(self, buf):
for line in buf.rstrip().splitlines():
self.logger.log(self.log_level, line.rstrip())
class Tee(object):
def __init__(self, *files):
self.files = files
def write(self, obj):
for f in self.files:
f.write(obj)
f.flush() # If you want the output to be visible immediately
def flush(self) :
for f in self.files:
f.flush()
# Static Variable decorator for calculating acceptance rate.
def static_var(varname, value):
def decorate(func):
setattr(func, varname, value)
return func
return decorate
def set_up_logger(file_name):
''' Set up logging info, write all print statements and errors to
file_name.'''
progress_logger = logging.getLogger('Progress Logger')
progress_logger.setLevel(logging.INFO)
# Add the log message handler to the logger
logging.basicConfig(filename=file_name,
level=logging.INFO,
filemode='w')
sl = StreamToLogger(progress_logger, logging.INFO)
sys.stdout = sl
sl = StreamToLogger(progress_logger, logging.ERROR)
sys.stderr = sl
return progress_logger
class MSDStatistics(object):
'''
Class to hold the means and std deviations of the time dependent
MSD for multiple schemes and timesteps. data is a dictionary of
dictionaries, holding runs indexed by scheme and timestep in that
order.
Each run is organized as a list of 3 arrays: [time, mean, std]
mean and std are matrices (the rotational MSD).
'''
def __init__(self, params):
self.data = {}
self.params = params
def add_run(self, scheme_name, dt, run_data):
'''
Add a run. Create the entry if need be.
run is organized as a list of 3 arrays: [time, mean, std]
In that order.
'''
if scheme_name not in self.data:
self.data[scheme_name] = dict()
self.data[scheme_name][dt] = run_data
def print_params(self):
print("Parameters are: ")
print(self.params)
def plot_time_dependent_msd(msd_statistics, ind, figure, color=None, symbol=None,
label=None, error_indices=[0, 1, 2, 3, 4, 5], data_name=None,
num_err_bars=None):
'''
Plot the <ind> entry of the rotational MSD as
a function of time on given figure (integer).
This uses the msd_statistics object
that is saved by the *_rotational_msd.py script.
ind contains the indices of the entry of the MSD matrix to be plotted.
ind = [row index, column index].
'''
scheme_colors = {'RFD': 'g', 'FIXMAN': 'b', 'EM': 'r'}
pyplot.figure(figure)
# Types of lines for different dts.
write_data = True
data_write_type = 'w'
if not data_name:
data_name = "MSD-component-%s-%s.txt" % (ind[0], ind[1])
if write_data:
np.set_printoptions(threshold=np.nan)
with open(os.path.join('.', 'data', data_name), data_write_type) as f:
f.write(' \n')
if not num_err_bars:
num_err_bars = 40
linestyles = [':', '--', '-.', '']
for scheme in list(msd_statistics.data.keys()):
for dt in list(msd_statistics.data[scheme].keys()):
if dt in list(DT_STYLES.keys()):
if not symbol:
style = ''
nosymbol_style = DT_STYLES[dt]
else:
style = symbol #+ DT_STYLES[dt]
nosymbol_style = DT_STYLES[dt]
else:
if not symbol:
style = '' #linestyles[len(DT_STYLES)]
DT_STYLES[dt] = linestyles[len(DT_STYLES)]
nosymbol_style = DT_STYLES[dt]
else:
DT_STYLES[dt] = linestyles[len(DT_STYLES)]
style = symbol #+ DT_STYLES[dt]
nosymbol_style = DT_STYLES[dt]
# Extract the entry specified by ind to plot.
num_steps = len(msd_statistics.data[scheme][dt][0])
# Don't put error bars at every point
err_idx = [int(num_steps*k/num_err_bars) for k in range(num_err_bars)]
msd_entries = np.array([msd_statistics.data[scheme][dt][1][_][ind[0]][ind[1]]
for _ in range(num_steps)])
msd_entries_std = np.array(
[msd_statistics.data[scheme][dt][2][_][ind[0]][ind[1]]
for _ in range(num_steps)])
# Set label and style.
if label:
if scheme == 'FIXMAN':
plot_label = scheme.capitalize() + label
else:
plot_label = scheme + label
else:
plot_label = '%s, dt=%s' % (scheme, dt)
if color:
plot_style = color + style
nosymbol_plot_style = color + nosymbol_style
err_bar_color = color
else:
plot_style = scheme_colors[scheme] + style
nosymbol_plot_style = scheme_colors[scheme] + nosymbol_style
err_bar_color = scheme_colors[scheme]
pyplot.plot(np.array(msd_statistics.data[scheme][dt][0])[err_idx],
msd_entries[err_idx],
plot_style,
label = plot_label)
pyplot.plot(msd_statistics.data[scheme][dt][0],
msd_entries,
nosymbol_plot_style)
if write_data:
with open(os.path.join('.', 'data', data_name),'a') as f:
f.write("scheme %s \n" % scheme)
f.write("dt %s \n" % dt)
f.write("time: %s \n" % msd_statistics.data[scheme][dt][0])
f.write("MSD component: %s \n" % msd_entries)
f.write("Std Dev: %s \n" % msd_entries_std)
if ind[0] in error_indices:
pyplot.errorbar(np.array(msd_statistics.data[scheme][dt][0])[err_idx],
msd_entries[err_idx],
yerr = 2.*msd_entries_std[err_idx],
fmt = err_bar_color + '.')
pyplot.ylabel('MSD')
pyplot.xlabel('time')
def log_time_progress(elapsed_time, time_units, total_time_units):
''' Write elapsed time and expected duration to progress log.'''
progress_logger = logging.getLogger('progress_logger')
if elapsed_time > 60.0:
progress_logger.info('Elapsed Time: %.2f Minutes.' %
(float(elapsed_time/60.)))
else:
progress_logger.info('Elapsed Time: %.2f Seconds' % float(elapsed_time))
# Report estimated duration.
if time_units > 0:
expected_duration = elapsed_time*total_time_units/time_units
if expected_duration > 60.0:
progress_logger.info('Expected Duration: %.2f Minutes.' %
(float(expected_duration/60.)))
else:
progress_logger.info('Expected Duration: %.2f Seconds' %
float(expected_duration))
def calc_total_msd_from_matrix_and_center(original_center, original_rotated_e,
final_center, rotated_e):
'''
Calculate 6x6 MSD including orientation and location. This is
calculated from precomputed center of the tetrahedron and rotation
matrix data to avoid repeating computation.
'''
du_hat = np.zeros(3)
for i in range(3):
du_hat += 0.5*np.cross(original_rotated_e[i],
rotated_e[i])
dx = np.array(final_center) - np.array(original_center)
displacement = np.concatenate([dx, du_hat])
return np.outer(displacement, displacement)
def calc_msd_data_from_trajectory(locations, orientations, calc_center_function, dt, end,
burn_in = 0, trajectory_length = 100):
''' Calculate rotational and translational (6x6) MSD matrix given a dictionary of
trajectory data. Return a numpy array of 6x6 MSD matrices, one for each time.
params:
locations: a list of length 3 lists, indication location of the rigid body
at each timestep.
orientations: a list of length 4 lists, indication entries of a quaternion
representing orientation of the rigid body at each timestep.
calc_center_function: a function that given location and orientation
(as a quaternion) computes the center of the body (or the point
that we use to track location MSD).
dt: timestep used in this simulation.
end: end time to which we calculate MSD.
burn_in: how many steps to skip before calculating MSD. This is 0 by default
because we assume that the simulation starts from a sample from the
Gibbs Boltzman distribution.
trajectory_length: How many points to keep in the window 0 to end.
The code will process every n steps to make the total
number of analyzed points roughly this value.
'''
data_interval = int(end/dt/trajectory_length) + 1
print("data_interval is ", data_interval)
n_steps = len(locations)
e_1 = np.array([1., 0., 0.])
e_2 = np.array([0., 1., 0.])
e_3 = np.array([0., 0., 1.])
if trajectory_length*data_interval > n_steps:
raise Exception('Trajectory length is longer than the total run. '
'Perform a longer run, or choose a shorter end time.')
print_increment = int(n_steps/20)
average_rotational_msd = np.array([np.zeros((6, 6))
for _ in range(trajectory_length)])
lagged_rotation_trajectory = []
lagged_location_trajectory = []
start_time = time.time()
for k in range(n_steps):
if k > burn_in and (k % data_interval == 0):
orientation = Quaternion(orientations[k])
R = orientation.rotation_matrix()
u_hat = [np.inner(R, e_1),
np.inner(R, e_2),
np.inner(R,e_3)]
lagged_rotation_trajectory.append(u_hat)
lagged_location_trajectory.append(calc_center_function(locations[k], orientation))
if len(lagged_location_trajectory) > trajectory_length:
lagged_location_trajectory = lagged_location_trajectory[1:]
lagged_rotation_trajectory = lagged_rotation_trajectory[1:]
for l in range(trajectory_length):
current_rot_msd = (calc_total_msd_from_matrix_and_center(
lagged_location_trajectory[0],
lagged_rotation_trajectory[0],
lagged_location_trajectory[l],
lagged_rotation_trajectory[l]))
average_rotational_msd[l] += current_rot_msd
if (k % print_increment) == 0 and k > 0:
print('At step %s of %s' % (k, n_steps))
print('For this run, time status is:')
elapsed = time.time() - start_time
log_time_progress(elapsed, k, n_steps)
average_rotational_msd = (average_rotational_msd/
(n_steps/data_interval - trajectory_length -
burn_in/data_interval))
return average_rotational_msd
def fft_msd(x, y, end):
''' Calculate scalar MSD between x and yusing FFT.
We want D(tau) = sum( (x(t+tau) -x(t))*(y(t+tau) - y(t)) )
This is computed with
D(tau) = sum(x(t)y(t)) + sum(x(t+tau)y(t+tau) - sum(x(t)*x(t+tau)
- sum(y(t)x(t+tau))
Where the last 2 sums are performed using an FFT.
We expect that x and y are the same length.
WARNING: THIS IS NOT CURRENTLY USED OR TESTED THOROUGHLY'''
if len(x) != len(y):
raise Exception('Length of X and Y are not the same, aborting MSD '
'FFT calculation.')
xy_sum_tau = np.cumsum(x[::-1]*y[::-1])[::-1]/np.arange(len(x), 0, -1)
xy_sum_t = np.cumsum(x*y)[::-1]/np.arange(len(x), 0, -1)
x_fft = np.fft.fft(x)
y_fft = np.fft.fft(y)
x_fft_xy = np.zeros(len(x))
x_fft_yx = np.zeros(len(x))
x_fft_xy[1:] = (x_fft[1:])*(y_fft[:0:-1])
x_fft_xy[0] = x_fft[0]*y_fft[0]
x_fft_yx[1:] = (y_fft[1:])*(x_fft[:0:-1])
x_fft_yx[0] = x_fft[0]*y_fft[0]
x_ifft_xy = np.fft.ifft(x_fft_xy)/np.arange(len(x), 0, -1)
x_ifft_yx = np.fft.ifft(x_fft_yx)/np.arange(len(x), 0, -1)
return (xy_sum_tau + xy_sum_t - x_ifft_yx - x_ifft_xy)[:end]
def write_trajectory_to_txt(file_name, trajectory, params, location=True):
'''
Write parameters and data to a text file. Parameters first, then the trajectory
one step at a time.
'''
# First check that the directory exists. If not, create it.
dir_name = os.path.dirname(file_name)
if not os.path.isdir(dir_name):
os.mkdir(dir_name)
# Write data to file, parameters first then trajectory.
with open(file_name, 'w') as f:
f.write('Parameters:\n')
for key, value in list(params.items()):
f.writelines(['%s: %s \n' % (key, value)])
f.write('Trajectory data:\n')
if location:
f.write('Location, Orientation:\n')
for k in range(len(trajectory[0])):
x = trajectory[0][k]
theta = trajectory[1][k]
f.write('%s, %s, %s, %s, %s, %s, %s \n' % (
x[0], x[1], x[2], theta[0], theta[1], theta[2], theta[3]))
else:
f.write('Orientation:\n')
for k in range(len(trajectory[0])):
theta = trajectory[0][k]
f.write('%s, %s, %s, %s \n' % (
theta[0], theta[1], theta[2], theta[3]))
def read_trajectory_from_txt(file_name, location=True):
'''
Read a trajectory and parameters from a text file.
'''
params = {}
locations = []
orientations = []
with open(file_name, 'r') as f:
# First line should be "Parameters:"
line = f.readline()
line = f.readline()
while line != 'Trajectory data:\n':
items = line.split(':')
if items[1].strip()[0] == '[':
last_token = items[1].strip()[-1]
list_items = items[1].strip()[1:].split(' ')
params[items[0]] = list_items
while last_token != ']':
line = f.readline()
list_items = line.strip().split(' ')
last_token = list_items[-1].strip()[-1]
if last_token == ']':
list_items[-1] = list_items[-1].strip()[:-1]
params[items[0]] += list_items
else:
params[items[0]] = items[1]
line = f.readline()
# Read next line after 'Trajectory data' 'Location, Orientation'
line = f.readline()
line = f.readline()
if location:
while line != '':
loc = line.split(',')
locations.append([float(x) for x in loc[0:3]])
orientations.append([float(x) for x in loc[3:7]])
line = f.readline()
else:
# These two lines are '\n', and 'Orientation'
line = f.readline()
line = f.readline()
while line != '':
quaternion_entries = line.split(',')
orientations.append(Quaternion([float(x) for x in quaternion_entries]))
line = f.readline()
return params, locations, orientations
def transfer_mobility(mobility_1, point_1, point_2):
'''
Calculate mobility at point 2 based on mobility
at point_1 of the body. This calculates the entire
force and torque mobility.
args:
mobility_1: mobility matrix (force, torque) ->
(velocity, angular velocity) evaluated at point_1.
point_1: 3 dimensional point where mobility_1 is evaluated.
point_2: 3 dimensional point where we want to know the mobility
returns:
mobility_2: The mobility matrix evaluated at point_2.
This uses formula (10) and (11) from:
"Bernal, De La Torre - Transport Properties and Hydrodynamic Centers
of Rigid Macromolecules with Arbitrary Shapes"
'''
r = np.array(point_1) - np.array(point_2)
mobility_2 = np.zeros([6, 6])
# Rotational mobility is the same.
mobility_2[3:6, 3:6] = mobility_1[3:6, 3:6]
mobility_2[3:6, 0:3] = mobility_1[3:6, 0:3]
mobility_2[3:6, 0:3] += tensor_cross_vector(mobility_1[3:6, 3:6], r)
mobility_2[0:3, 3:6] = mobility_2[3:6, 0:3].T
# Start with point 1 translation.
mobility_2[0:3, 0:3] = mobility_1[0:3, 0:3]
# Add coupling block transpose cross r.
mobility_2[0:3, 0:3] += tensor_cross_vector(mobility_1[0:3, 3:6 ], r)
# Subtract r cross coupling block.
mobility_2[0:3, 0:3] -= vector_cross_tensor(r, mobility_1[3:6, 0:3])
# Subtract r cross D_r cross r
mobility_2[0:3, 0:3] -= vector_cross_tensor(
r, tensor_cross_vector(mobility_1[3:6, 3:6], r))
return mobility_2
def tensor_cross_vector(T, v):
'''
Tensor cross vector from De La Torre paper.
Assume T is 3x3 and v is length 3
'''
result = np.zeros([3, 3])
for k in range(3):
for l in range(3):
result[k, l] = (T[k, (l+1) % 3]*v[(l - 1) % 3] -
T[k, (l-1) % 3]*v[(l + 1) % 3])
return result
def vector_cross_tensor(v, T):
'''
vector cross trensor from De La Torre paper.
Assume T is 3x3 and v is length 3
'''
result = np.zeros([3, 3])
for k in range(3):
for l in range(3):
result[k, l] = (T[(k-1) % 3, l]*v[(k + 1) % 3] -
T[(k+1) % 3, l]*v[(k - 1) % 3])
return result
@static_var('timers', {})
def timer(name, print_one = False, print_all = False, clean_all = False):
'''
Timer to profile the code. It measures the time elapsed between successive
calls and it prints the total time elapsed after sucesive calls.
'''
if name not in timer.timers:
timer.timers[name] = (0, time.time())
elif timer.timers[name][1] is None:
time_tuple = (timer.timers[name][0], time.time())
timer.timers[name] = time_tuple
else:
time_tuple = (timer.timers[name][0] + (time.time() - timer.timers[name][1]), None)
timer.timers[name] = time_tuple
if print_one is True:
print(name, ' = ', timer.timers[name][0])
if print_all is True:
print('\n')
col_width = max(len(key) for key in timer.timers)
for key in sorted(timer.timers):
print("".join(key.ljust(col_width)), ' = ', timer.timers[key][0])
if clean_all:
timer.timers = {}
return
def gmres(A, b, x0=None, tol=1e-05, restart=None, maxiter=None, xtype=None, M=None, callback=None, restrt=None, PC_side='right'):
'''
Wrapper for scipy gmres to use right or left preconditioner.
Solve the linear system A*x = b, using right or left preconditioning.
Inputs and outputs as in scipy gmres plus PC_side ('right' or 'left').
Right Preconditioner (default):
First solve A*P^{-1} * y = b for y
then solve P*x = y, for x.
Left Preconditioner;
Solve P^{-1}*A*x = P^{-1}*b
Use Generalized Minimal Residual to solve A x = b.
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator}
Matrix that defines the linear system.
b : {array, matrix}
Right hand side of the linear system. It can be a matrix.
Returns
-------
x : {array, matrix}
The solution of the linear system.
info : int
Provides convergence information:
* 0 : success
* >0 : convergence to tolerance not achieved, number of iterations
* <0 : illegal input or breakdown
Other parameters
----------------
PC_side: {'right', 'left'}
Use right or left Preconditioner. Right preconditioner (default) uses
the real residual to determine convergence. Left preconditioner uses
a preconditioned residual (M*r^n = M*(b - A*x^n)) to determine convergence.
x0 : {array, matrix}
Initial guess for the linear system (zero by default).
tol : float
Tolerance. The solver finishes when the relative or the absolute residual
norm are below this tolerance.
restart : int, optional
Number of iterations between restarts.
Default is 20.
maxiter : int, optional
Maximum number of iterations.
xtype : {'f','d','F','D'}
This parameter is DEPRECATED --- avoid using it.
The type of the result. If None, then it will be determined from
A.dtype.char and b. If A does not have a typecode method then it
will compute A.matvec(x0) to get a typecode. To save the extra
computation when A does not have a typecode attribute use xtype=0
for the same type as b or use xtype='f','d','F',or 'D'.
This parameter has been superseded by LinearOperator.
M : {sparse matrix, dense matrix, LinearOperator}
Inverse of the preconditioner of A. By default M is None.
callback : function
User-supplied function to call after each iteration. It is called
as callback(rk), where rk is the current residual vector.
restrt : int, optional
DEPRECATED - use `restart` instead.
See Also
--------
LinearOperator
Notes
-----
A preconditioner, P, is chosen such that P is close to A but easy to solve
for. The preconditioner parameter required by this routine is
``M = P^-1``. The inverse should preferably not be calculated
explicitly. Rather, use the following template to produce M::
# Construct a linear operator that computes P^-1 * x.
import scipy.sparse.linalg as spla
M_x = lambda x: spla.spsolve(P, x)
M = spla.LinearOperator((n, n), M_x)
'''
# If left preconditioner (or no Preconditioner) just call scipy gmres
if PC_side == 'left' or M is None:
return scspla.gmres(A, b, M=M, x0=x0, tol=tol, atol=0, maxiter=maxiter, restart=restart, callback=callback)
# Create LinearOperator for A and P^{-1}
A_LO = scspla.aslinearoperator(A)
M_LO = scspla.aslinearoperator(M)
# Define new LinearOperators P^{-1} * A and A * P^{-1}
def PinvA(x,A,M):
return M.matvec(A.matvec(x))
def APinv(x,A,M):
return A.matvec(M.matvec(x))
# Select new linear operator
if PC_side == 'left_res':
A_new = PinvA
elif PC_side == 'right':
A_new = APinv
# Set new linear operator
A_partial = partial(A_new, A=A_LO, M=M_LO)
A_partial_LO = scspla.LinearOperator((b.size, b.size), matvec = A_partial, dtype='float64')
# Modify RHS
if PC_side == 'left_res':
# b_new = P^{-1} * b
b = M.matvec(b)
# Solve system A_new * x = b
(x, info) = scspla.gmres(A_partial_LO, b, x0=None, tol=tol, atol=0, maxiter=maxiter, restart=restart, callback=callback)
# Modify solution
if PC_side == 'right':
# Solve system P*x = y
x = M_LO.matvec(x)
# Return solution and info
return x, info
def get_vectors_frame_body(vector, body=None, translate=True, rotate=True, transpose=False):
'''
Get vector in the frame of reference of the body.
If body == None, use the lab frame of reference, i.e. do not translate or rotate anything.
Inputs:
vector = input vector to transform.
body = body to use as frame of reference.
translate = if translate==False, do not translate vectors but they can be rotated.
rotate = if rotated==False, do not rotate vectors but they can be translated.
Outputs:
vector_frame = vector in the body frame of reference.
'''
if body is not None:
# Rotate to body frame of reference
if rotate:
R0 = body.orientation.rotation_matrix()
R0 = R0.T if transpose else R0
vector_frame = np.einsum('ij,kj->ki', R0, vector.reshape((vector.size // 3, 3)))
else:
vector_frame = np.copy(vector.reshape((vector.size // 3, 3)))
# Translate to body frame of reference
if translate:
vector_frame += body.location
else:
vector_frame = np.copy(vector)
return vector_frame