-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshazam_val.m
43 lines (40 loc) · 1 KB
/
shazam_val.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
%% Prepare data vector
load('data_final.mat')
dataTotal_train = cat(1, ca, la, oa, pa);
dataTotal_test = cat(1, ct, lt, ot, pt);
%% Validation
labels = zeros(1,60);
labels(1:15) =1;
labels(16:30) =2;
labels(31:45) =3;
labels(46:60) =4;
predictions = zeros(1,60);
% *******************classifier********************************
fs=1000;
for j = 1:1:size(dataTotal_test,1)
% j=17
j=10;
tic
sst=dataTotal_test(55,:);
for zz=1:1:size(dataTotal_train,1)
temp=corrcoef(crs(sst,fs),crs(dataTotal_train(zz,:),fs));
result(zz)=temp(1,2);
end
[val inx]=max(result);
if inx<61
predictions(j)=1;
elseif inx>60 && inx<121
predictions(j)=2;
elseif inx>120 && inx<181
predictions(j)=3;
elseif inx>180 && inx<241
predictions(j)=4;
end
toc
%display(predictions)
end
%**************************************************************
%% Confusion Matrix
C = confusionmat(labels,predictions);
figure(1),confusionchart(C);
cp = classperf(labels',predictions')