Skip to content

Commit

Permalink
Add quick start for pytorch
Browse files Browse the repository at this point in the history
  • Loading branch information
hipudding authored and FFFrog committed Jun 4, 2024
1 parent ede2554 commit acc73c4
Show file tree
Hide file tree
Showing 5 changed files with 280 additions and 5 deletions.
1 change: 1 addition & 0 deletions conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
extensions = [
'sphinx.ext.autodoc',
'recommonmark',
'sphinxext.remoteliteralinclude'
]

# Add any paths that contain templates here, relative to this directory.
Expand Down
2 changes: 2 additions & 0 deletions index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@

sources/pytorch/install.rst

sources/pytorch/quick_start.rst


.. warning::

Expand Down
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,4 @@ Sphinx
sphinx-autobuild
sphinx-rtd-theme
recommonmark
sphinxext-remoteliteralinclude
11 changes: 6 additions & 5 deletions sources/pytorch/install.rst
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
安装PyTorch和PyTorch-NPU
安装
===========================

跟随指导,安装在NPU上运行的PyTorch版本。
Expand Down Expand Up @@ -108,7 +108,8 @@
import torch
import torch_npu

torch.npu.set_device(0)
a = torch.randn(2,3).to('npu')
b = torch.randn(2,3).to('npu')
a + b
x = torch.randn(2, 2).npu()
y = torch.randn(2, 2).npu()
z = x.mm(y)

print(z)
270 changes: 270 additions & 0 deletions sources/pytorch/quick_start.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,270 @@
快速开始
===========================

以下说明假设您已经安装了PyTorch-NPU环境,有关环境安装,请参考 :doc:`./install`

一般来说,要在代码中使用NPU进行训练推理,需要做以下更改:

#. 导入torch_npu扩展包 ``import torch_npu``
#. 将模型,以及模型输入上传到NPU上

::

device= torch.device("npu")
model = model.to(device)
input = input.to(device)

下面的实例演示了如何使用NPU进行训练和推理任务:

1. 单卡训练
-----------------------
以下代码使用了cifar10数据集在NPU上训练模型(截取自 `PyTorch tutorials <https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html>`_),请关注高亮的内容。

.. code-block:: python
:linenos:
:emphasize-lines: 20,21,23,24,25,84,85,109,110,146,147,171,172
"""
Training an image classifier
----------------------------
We will do the following steps in order:
1. Load and normalize the CIFAR10 training and test datasets using
``torchvision``
1. Define a Convolutional Neural Network
2. Define a loss function
3. Train the network on the training data
4. Test the network on the test data
5. Load and normalize CIFAR10
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using ``torchvision``, it’s extremely easy to load CIFAR10.
"""
import torch
# 引入torch-npu包
import torch_npu
# 定义device
device = torch.device('npu:0' if torch.npu.is_available() else 'cpu')
print(device)
import torchvision
import torchvision.transforms as transforms
########################################################################
# The output of torchvision datasets are PILImage images of range [0, 1].
# We transform them to Tensors of normalized range [-1, 1].
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
########################################################################
# 2. Define a Convolutional Neural Network
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Copy the neural network from the Neural Networks section before and modify it to
# take 3-channel images (instead of 1-channel images as it was defined).
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 将模型加载到NPU上
net.to(device)
########################################################################
# 3. Define a Loss function and optimizer
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Let's use a Classification Cross-Entropy loss and SGD with momentum.
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
########################################################################
# 4. Train the network
# ^^^^^^^^^^^^^^^^^^^^
#
# This is when things start to get interesting.
# We simply have to loop over our data iterator, and feed the inputs to the
# network and optimize.
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
# 将input数据发送到NPU上
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0
print('Finished Training')
########################################################################
# 5. Test the network on the test data
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# We have trained the network for 2 passes over the training dataset.
# But we need to check if the network has learnt anything at all.
#
# We will check this by predicting the class label that the neural network
# outputs, and checking it against the ground-truth. If the prediction is
# correct, we add the sample to the list of correct predictions.
#
# Let us look at how the network performs on the whole dataset.
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
# 将input数据发送到NPU上
images, labels = data[0].to(device), data[1].to(device)
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')
########################################################################
# That looks way better than chance, which is 10% accuracy (randomly picking
# a class out of 10 classes).
# Seems like the network learnt something.
#
# Hmmm, what are the classes that performed well, and the classes that did
# not perform well:
# prepare to count predictions for each class
correct_pred = {classname: 0 for classname in classes}
total_pred = {classname: 0 for classname in classes}
# again no gradients needed
with torch.no_grad():
for data in testloader:
# 将input数据发送到NPU上
images, labels = data[0].to(device), data[1].to(device)
outputs = net(images)
_, predictions = torch.max(outputs, 1)
# collect the correct predictions for each class
for label, prediction in zip(labels, predictions):
if label == prediction:
correct_pred[classes[label]] += 1
total_pred[classes[label]] += 1
# print accuracy for each class
for classname, correct_count in correct_pred.items():
accuracy = 100 * float(correct_count) / total_pred[classname]
print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')
2. 使用DeepSpeed多卡并行训练
---------------------------
以下代码使用了cifar10数据集,使用DeepSpeed训练模型在多张NPU卡上进行模型训练(来自 `DeepSpeed Examples <https://github.com/microsoft/DeepSpeedExamples/blob/master/training/cifar/cifar10_deepspeed.py>`_),自DeepSpeed v0.12.6之后,代码无需任何修改,即可自动检测NPU并进行训练。

.. rli:: https://raw.githubusercontent.com/microsoft/DeepSpeedExamples/master/training/cifar/cifar10_deepspeed.py
:language: python
:linenos:


3. 使用Transforms进行模型微调
---------------------------------
以下代码使用了Transforms对LLM进行微调(来自 `transforms examples <https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py>`_),自transforms xxx版本以及accelerator 0.21.0版本以后,代码无需任何修改,即可自动检测NPU并进行。

.. rli:: https://raw.githubusercontent.com/huggingface/transformers/main/examples/pytorch/language-modeling/run_clm.py
:language: python
:linenos:


.. code-block:: shell
:linenos:
python run_clm.py \
--model_name_or_path openai-community/gpt2 \
--train_file path_to_train_file \
--validation_file path_to_validation_file \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 8 \
--do_train \
--do_eval \
--output_dir /tmp/test-clm
4. 使用Diffusers进行模型微调
---------------------------------
以下代码使用了Diffusers对文生图模型进行微调(来自 `diffusers examples <https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py>`_),自diffusers v0.27.0版本以后,代码无需任何修改,即可自动检测NPU并进行。


.. rli:: https://raw.githubusercontent.com/huggingface/diffusers/main/examples/text_to_image/train_text_to_image.py
:language: python
:linenos:


.. code-block:: shell
:linenos:
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export DATASET_NAME="lambdalabs/naruto-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME \
--use_ema \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--gradient_checkpointing \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--lr_scheduler="constant" --lr_warmup_steps=0 \
--output_dir="sd-pokemon-model"

0 comments on commit acc73c4

Please sign in to comment.