-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmrcnn.py
1083 lines (888 loc) · 51.9 KB
/
mrcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Parts are based on https://github.com/multimodallearning/pytorch-mask-rcnn
published under MIT license.
"""
import model_utils as mutils
import exp_utils as utils
from cuda_functions.nms_2D.pth_nms import nms_gpu as nms_2D
from cuda_functions.nms_3D.pth_nms import nms_gpu as nms_3D
from cuda_functions.roi_align_2D.roi_align.crop_and_resize import CropAndResizeFunction as ra2D
from cuda_functions.roi_align_3D.roi_align.crop_and_resize import CropAndResizeFunction as ra3D
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils
############################################################
# Networks on top of backbone
############################################################
class RPN(nn.Module):
"""
Region Proposal Network.
"""
def __init__(self, cf, conv):
super(RPN, self).__init__()
self.dim = conv.dim
self.conv_shared = conv(cf.end_filts, cf.n_rpn_features, ks=3, stride=cf.rpn_anchor_stride, pad=1, relu=cf.relu)
self.conv_class = conv(cf.n_rpn_features, 2 * len(cf.rpn_anchor_ratios), ks=1, stride=1, relu=None)
self.conv_bbox = conv(cf.n_rpn_features, 2 * self.dim * len(cf.rpn_anchor_ratios), ks=1, stride=1, relu=None)
def forward(self, x):
"""
:param x: input feature maps (b, in_channels, y, x, (z))
:return: rpn_class_logits (b, 2, n_anchors)
:return: rpn_probs_logits (b, 2, n_anchors)
:return: rpn_bbox (b, 2 * dim, n_anchors)
"""
# Shared convolutional base of the RPN.
x = self.conv_shared(x)
# Anchor Score. (batch, anchors per location * 2, y, x, (z)).
rpn_class_logits = self.conv_class(x)
# Reshape to (batch, 2, anchors)
axes = (0, 2, 3, 1) if self.dim == 2 else (0, 2, 3, 4, 1)
rpn_class_logits = rpn_class_logits.permute(*axes)
rpn_class_logits = rpn_class_logits.contiguous()
rpn_class_logits = rpn_class_logits.view(x.size()[0], -1, 2)
# Softmax on last dimension (fg vs. bg).
rpn_probs = F.softmax(rpn_class_logits, dim=2)
# Bounding box refinement. (batch, anchors_per_location * (y, x, (z), log(h), log(w), (log(d)), y, x, (z))
rpn_bbox = self.conv_bbox(x)
# Reshape to (batch, 2*dim, anchors)
rpn_bbox = rpn_bbox.permute(*axes)
rpn_bbox = rpn_bbox.contiguous()
rpn_bbox = rpn_bbox.view(x.size()[0], -1, self.dim * 2)
return [rpn_class_logits, rpn_probs, rpn_bbox]
class Classifier(nn.Module):
"""
Head network for classification and bounding box refinement. Performs RoiAlign, processes resulting features through a
shared convolutional base and finally branches off the classifier- and regression head.
"""
def __init__(self, cf, conv):
super(Classifier, self).__init__()
self.dim = conv.dim
self.in_channels = cf.end_filts
self.pool_size = cf.pool_size
self.pyramid_levels = cf.pyramid_levels
# instance_norm does not work with spatial dims (1, 1, (1))
norm = cf.norm if cf.norm != 'instance_norm' else None
self.conv1 = conv(cf.end_filts, cf.end_filts * 4, ks=self.pool_size, stride=1, norm=norm, relu=cf.relu)
self.conv2 = conv(cf.end_filts * 4, cf.end_filts * 4, ks=1, stride=1, norm=norm, relu=cf.relu)
self.linear_class = nn.Linear(cf.end_filts * 4, cf.head_classes)
self.linear_bbox = nn.Linear(cf.end_filts * 4, cf.head_classes * 2 * self.dim)
def forward(self, x, rois):
"""
:param x: input feature maps (b, in_channels, y, x, (z))
:param rois: normalized box coordinates as proposed by the RPN to be forwarded through
the second stage (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ix). Proposals of all batch elements
have been merged to one vector, while the origin info has been stored for re-allocation.
:return: mrcnn_class_logits (n_proposals, n_head_classes)
:return: mrcnn_bbox (n_proposals, n_head_classes, 2 * dim) predicted corrections to be applied to proposals for refinement.
"""
x = pyramid_roi_align(x, rois, self.pool_size, self.pyramid_levels, self.dim)
x = self.conv1(x)
x = self.conv2(x)
x = x.view(-1, self.in_channels * 4)
mrcnn_class_logits = self.linear_class(x)
mrcnn_bbox = self.linear_bbox(x)
mrcnn_bbox = mrcnn_bbox.view(mrcnn_bbox.size()[0], -1, self.dim * 2)
return [mrcnn_class_logits, mrcnn_bbox]
class Mask(nn.Module):
"""
Head network for proposal-based mask segmentation. Performs RoiAlign, some convolutions and applies sigmoid on the
output logits to allow for overlapping classes.
"""
def __init__(self, cf, conv):
super(Mask, self).__init__()
self.pool_size = cf.mask_pool_size
self.pyramid_levels = cf.pyramid_levels
self.dim = conv.dim
self.conv1 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu)
self.conv2 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu)
self.conv3 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu)
self.conv4 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu)
if conv.dim == 2:
self.deconv = nn.ConvTranspose2d(cf.end_filts, cf.end_filts, kernel_size=2, stride=2)
else:
self.deconv = nn.ConvTranspose3d(cf.end_filts, cf.end_filts, kernel_size=2, stride=2)
self.relu = nn.ReLU(inplace=True) if cf.relu == 'relu' else nn.LeakyReLU(inplace=True)
self.conv5 = conv(cf.end_filts, cf.head_classes, ks=1, stride=1, relu=None)
self.sigmoid = nn.Sigmoid()
def forward(self, x, rois):
"""
:param x: input feature maps (b, in_channels, y, x, (z))
:param rois: normalized box coordinates as proposed by the RPN to be forwarded through
the second stage (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ix). Proposals of all batch elements
have been merged to one vector, while the origin info has been stored for re-allocation.
:return: x: masks (n_sampled_proposals (n_detections in inference), n_classes, y, x, (z))
"""
x = pyramid_roi_align(x, rois, self.pool_size, self.pyramid_levels, self.dim)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.relu(self.deconv(x))
x = self.conv5(x)
x = self.sigmoid(x)
return x
############################################################
# Loss Functions
############################################################
def compute_rpn_class_loss(rpn_match, rpn_class_logits, shem_poolsize):
"""
:param rpn_match: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors.
:param rpn_class_logits: (n_anchors, 2). logits from RPN classifier.
:param shem_poolsize: int. factor of top-k candidates to draw from per negative sample
(stochastic-hard-example-mining).
:return: loss: torch tensor
:return: np_neg_ix: 1D array containing indices of the neg_roi_logits, which have been sampled for training.
"""
# filter out neutral anchors.
pos_indices = torch.nonzero(rpn_match == 1)
neg_indices = torch.nonzero(rpn_match == -1)
# loss for positive samples
if 0 not in pos_indices.size():
pos_indices = pos_indices.squeeze(1)
roi_logits_pos = rpn_class_logits[pos_indices]
pos_loss = F.cross_entropy(roi_logits_pos, torch.LongTensor([1] * pos_indices.shape[0]).cuda())
else:
pos_loss = torch.FloatTensor([0]).cuda()
# loss for negative samples: draw hard negative examples (SHEM)
# that match the number of positive samples, but at least 1.
if 0 not in neg_indices.size():
neg_indices = neg_indices.squeeze(1)
roi_logits_neg = rpn_class_logits[neg_indices]
negative_count = np.max((1, pos_indices.cpu().data.numpy().size))
roi_probs_neg = F.softmax(roi_logits_neg, dim=1)
neg_ix = mutils.shem(roi_probs_neg, negative_count, shem_poolsize)
neg_loss = F.cross_entropy(roi_logits_neg[neg_ix], torch.LongTensor([0] * neg_ix.shape[0]).cuda())
np_neg_ix = neg_ix.cpu().data.numpy()
else:
neg_loss = torch.FloatTensor([0]).cuda()
np_neg_ix = np.array([]).astype('int32')
loss = (pos_loss + neg_loss) / 2
return loss, np_neg_ix
def compute_rpn_bbox_loss(rpn_target_deltas, rpn_pred_deltas, rpn_match):
"""
:param rpn_target_deltas: (b, n_positive_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))).
Uses 0 padding to fill in unsed bbox deltas.
:param rpn_pred_deltas: predicted deltas from RPN. (b, n_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd))))
:param rpn_match: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors.
:return: loss: torch 1D tensor.
"""
if 0 not in torch.nonzero(rpn_match == 1).size():
indices = torch.nonzero(rpn_match == 1).squeeze(1)
# Pick bbox deltas that contribute to the loss
rpn_pred_deltas = rpn_pred_deltas[indices]
# Trim target bounding box deltas to the same length as rpn_bbox.
target_deltas = rpn_target_deltas[:rpn_pred_deltas.size()[0], :]
# Smooth L1 loss
loss = F.smooth_l1_loss(rpn_pred_deltas, target_deltas)
else:
loss = torch.FloatTensor([0]).cuda()
return loss
def compute_mrcnn_class_loss(target_class_ids, pred_class_logits):
"""
:param target_class_ids: (n_sampled_rois) batch dimension was merged into roi dimension.
:param pred_class_logits: (n_sampled_rois, n_classes)
:return: loss: torch 1D tensor.
"""
if 0 not in target_class_ids.size():
loss = F.cross_entropy(pred_class_logits, target_class_ids.long())
else:
loss = torch.FloatTensor([0.]).cuda()
return loss
def compute_mrcnn_bbox_loss(mrcnn_target_deltas, mrcnn_pred_deltas, target_class_ids):
"""
:param mrcnn_target_deltas: (n_sampled_rois, (dy, dx, (dz), log(dh), log(dw), (log(dh)))
:param mrcnn_pred_deltas: (n_sampled_rois, n_classes, (dy, dx, (dz), log(dh), log(dw), (log(dh)))
:param target_class_ids: (n_sampled_rois)
:return: loss: torch 1D tensor.
"""
if 0 not in torch.nonzero(target_class_ids > 0).size():
positive_roi_ix = torch.nonzero(target_class_ids > 0)[:, 0]
positive_roi_class_ids = target_class_ids[positive_roi_ix].long()
target_bbox = mrcnn_target_deltas[positive_roi_ix, :].detach()
pred_bbox = mrcnn_pred_deltas[positive_roi_ix, positive_roi_class_ids, :]
loss = F.smooth_l1_loss(pred_bbox, target_bbox)
else:
loss = torch.FloatTensor([0]).cuda()
return loss
def compute_mrcnn_mask_loss(target_masks, pred_masks, target_class_ids):
"""
:param target_masks: (n_sampled_rois, y, x, (z)) A float32 tensor of values 0 or 1. Uses zero padding to fill array.
:param pred_masks: (n_sampled_rois, n_classes, y, x, (z)) float32 tensor with values between [0, 1].
:param target_class_ids: (n_sampled_rois)
:return: loss: torch 1D tensor.
"""
if 0 not in torch.nonzero(target_class_ids > 0).size():
# Only positive ROIs contribute to the loss. And only
# the class specific mask of each ROI.
positive_ix = torch.nonzero(target_class_ids > 0)[:, 0]
positive_class_ids = target_class_ids[positive_ix].long()
y_true = target_masks[positive_ix, :, :].detach()
y_pred = pred_masks[positive_ix, positive_class_ids, :, :]
loss = F.binary_cross_entropy(y_pred, y_true)
else:
loss = torch.FloatTensor([0]).cuda()
return loss
############################################################
# Helper Layers
############################################################
def proposal_layer(rpn_pred_probs, rpn_pred_deltas, proposal_count, anchors, cf):
"""
Receives anchor scores and selects a subset to pass as proposals
to the second stage. Filtering is done based on anchor scores and
non-max suppression to remove overlaps. It also applies bounding
box refinment detals to anchors.
:param rpn_pred_probs: (b, n_anchors, 2)
:param rpn_pred_deltas: (b, n_anchors, (y, x, (z), log(h), log(w), (log(d))))
:return: batch_normalized_boxes: Proposals in normalized coordinates
(b, proposal_count, (y1, x1, y2, x2, (z1), (z2)))
:return: batch_out_proposals: Box coords + RPN foreground scores
for monitoring/plotting (b, proposal_count, (y1, x1, y2, x2, (z1), (z2), score))
"""
batch_scores = rpn_pred_probs[:, :, 1]
batch_deltas = rpn_pred_deltas
batch_anchors = anchors
batch_normalized_boxes = []
batch_out_proposals = []
# loop over batch dimension.
for ix in range(batch_scores.shape[0]):
scores = batch_scores[ix]
deltas = batch_deltas[ix]
anchors = batch_anchors.clone()
# norm deltas
std_dev = torch.from_numpy(cf.rpn_bbox_std_dev[None]).float().cuda()
deltas = deltas * std_dev
# improve performance by trimming to top anchors by score
# and doing the rest on the smaller subset.
pre_nms_limit = min(cf.pre_nms_limit, anchors.size()[0])
scores, order = scores.sort(descending=True)
order = order[:pre_nms_limit]
scores = scores[:pre_nms_limit]
deltas = deltas[order, :]
anchors = anchors[order, :]
# apply deltas to anchors to get refined anchors and filter with non-maximum surpression.
if batch_deltas.shape[-1] == 4:
boxes = mutils.apply_box_deltas_2D(anchors, deltas)
boxes = mutils.clip_boxes_2D(boxes, cf.window)
keep = nms_2D(torch.cat((boxes, scores.unsqueeze(1)), 1), cf.rpn_nms_threshold)
norm = torch.from_numpy(cf.scale).float().cuda()
else:
boxes = mutils.apply_box_deltas_3D(anchors, deltas)
boxes = mutils.clip_boxes_3D(boxes, cf.window)
keep = nms_3D(torch.cat((boxes, scores.unsqueeze(1)), 1), cf.rpn_nms_threshold)
norm = torch.from_numpy(cf.scale).float().cuda()
keep = keep[:proposal_count]
boxes = boxes[keep, :]
rpn_scores = scores[keep][:, None]
# pad missing boxes with 0.
if boxes.shape[0] < proposal_count:
n_pad_boxes = proposal_count - boxes.shape[0]
zeros = torch.zeros([n_pad_boxes, boxes.shape[1]]).cuda()
boxes = torch.cat([boxes, zeros], dim=0)
zeros = torch.zeros([n_pad_boxes, rpn_scores.shape[1]]).cuda()
rpn_scores = torch.cat([rpn_scores, zeros], dim=0)
# concat box and score info for monitoring/plotting.
batch_out_proposals.append(torch.cat((boxes, rpn_scores), 1).cpu().data.numpy())
# normalize dimensions to range of 0 to 1.
normalized_boxes = boxes / norm
# add back batch dimension
batch_normalized_boxes.append(normalized_boxes.unsqueeze(0))
batch_normalized_boxes = torch.cat(batch_normalized_boxes)
batch_out_proposals = np.array(batch_out_proposals)
return batch_normalized_boxes, batch_out_proposals
def pyramid_roi_align(feature_maps, rois, pool_size, pyramid_levels, dim):
"""
Implements ROI Pooling on multiple levels of the feature pyramid.
:param feature_maps: list of feature maps, each of shape (b, c, y, x , (z))
:param rois: proposals (normalized coords.) as returned by RPN. contain info about original batch element allocation.
(n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ixs)
:param pool_size: list of poolsizes in dims: [x, y, (z)]
:param pyramid_levels: list. [0, 1, 2, ...]
:return: pooled: pooled feature map rois (n_proposals, c, poolsize_y, poolsize_x, (poolsize_z))
Output:
Pooled regions in the shape: [num_boxes, height, width, channels].
The width and height are those specific in the pool_shape in the layer
constructor.
"""
boxes = rois[:, :dim*2]
batch_ixs = rois[:, dim*2]
# Assign each ROI to a level in the pyramid based on the ROI area.
if dim == 2:
y1, x1, y2, x2 = boxes.chunk(4, dim=1)
else:
y1, x1, y2, x2, z1, z2 = boxes.chunk(6, dim=1)
h = y2 - y1
w = x2 - x1
# Equation 1 in https://arxiv.org/abs/1612.03144. Account for
# the fact that our coordinates are normalized here.
# divide sqrt(h*w) by 1 instead image_area.
roi_level = (4 + mutils.log2(torch.sqrt(h*w))).round().int().clamp(pyramid_levels[0], pyramid_levels[-1])
# if Pyramid contains additional level P6, adapt the roi_level assignemnt accordingly.
if len(pyramid_levels) == 5:
roi_level[h*w > 0.65] = 5
# Loop through levels and apply ROI pooling to each.
pooled = []
box_to_level = []
for level_ix, level in enumerate(pyramid_levels):
ix = roi_level == level
if not ix.any():
continue
ix = torch.nonzero(ix)[:, 0]
level_boxes = boxes[ix, :]
# re-assign rois to feature map of original batch element.
ind = batch_ixs[ix].int()
# Keep track of which box is mapped to which level
box_to_level.append(ix)
# Stop gradient propogation to ROI proposals
level_boxes = level_boxes.detach()
# Crop and Resize
# From Mask R-CNN paper: "We sample four regular locations, so
# that we can evaluate either max or average pooling. In fact,
# interpolating only a single value at each bin center (without
# pooling) is nearly as effective."
#
# Here we use the simplified approach of a single value per bin,
# which is how is done in tf.crop_and_resize()
#
# Also fixed a bug from original implementation, reported in:
# https://hackernoon.com/how-tensorflows-tf-image-resize-stole-60-days-of-my-life-aba5eb093f35
if len(pool_size) == 2:
pooled_features = ra2D(pool_size[0], pool_size[1], 0)(feature_maps[level_ix], level_boxes, ind)
else:
pooled_features = ra3D(pool_size[0], pool_size[1], pool_size[2], 0)(feature_maps[level_ix], level_boxes, ind)
pooled.append(pooled_features)
# Pack pooled features into one tensor
pooled = torch.cat(pooled, dim=0)
# Pack box_to_level mapping into one array and add another
# column representing the order of pooled boxes
box_to_level = torch.cat(box_to_level, dim=0)
# Rearrange pooled features to match the order of the original boxes
_, box_to_level = torch.sort(box_to_level)
pooled = pooled[box_to_level, :, :]
return pooled
def detection_target_layer(batch_proposals, batch_mrcnn_class_scores, batch_gt_class_ids, batch_gt_boxes, batch_gt_masks, cf):
"""
Subsamples proposals for mrcnn losses and generates targets. Sampling is done per batch element, seems to have positive
effects on training, as opposed to sampling over entire batch. Negatives are sampled via stochastic-hard-example-mining
(SHEM), where a number of negative proposals are drawn from larger pool of highest scoring proposals for stochasticity.
Scoring is obtained here as the max over all foreground probabilities as returned by mrcnn_classifier (worked better than
loss-based class balancing methods like "online-hard-example-mining" or "focal loss".)
:param batch_proposals: (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ixs).
boxes as proposed by RPN. n_proposals here is determined by batch_size * POST_NMS_ROIS.
:param batch_mrcnn_class_scores: (n_proposals, n_classes)
:param batch_gt_class_ids: list over batch elements. Each element is a list over the corresponding roi target labels.
:param batch_gt_boxes: list over batch elements. Each element is a list over the corresponding roi target coordinates.
:param batch_gt_masks: list over batch elements. Each element is binary mask of shape (n_gt_rois, y, x, (z), c)
:return: sample_indices: (n_sampled_rois) indices of sampled proposals to be used for loss functions.
:return: target_class_ids: (n_sampled_rois)containing target class labels of sampled proposals.
:return: target_deltas: (n_sampled_rois, 2 * dim) containing target deltas of sampled proposals for box refinement.
:return: target_masks: (n_sampled_rois, y, x, (z)) containing target masks of sampled proposals.
"""
# normalization of target coordinates
if cf.dim == 2:
h, w = cf.patch_size
scale = torch.from_numpy(np.array([h, w, h, w])).float().cuda()
else:
h, w, z = cf.patch_size
scale = torch.from_numpy(np.array([h, w, h, w, z, z])).float().cuda()
positive_count = 0
negative_count = 0
sample_positive_indices = []
sample_negative_indices = []
sample_deltas = []
sample_masks = []
sample_class_ids = []
# loop over batch and get positive and negative sample rois.
for b in range(len(batch_gt_class_ids)):
gt_class_ids = torch.from_numpy(batch_gt_class_ids[b]).int().cuda()
gt_masks = torch.from_numpy(batch_gt_masks[b]).float().cuda()
if np.any(batch_gt_class_ids[b] > 0): # skip roi selection for no gt images.
gt_boxes = torch.from_numpy(batch_gt_boxes[b]).float().cuda() / scale
else:
gt_boxes = torch.FloatTensor().cuda()
# get proposals and indices of current batch element.
proposals = batch_proposals[batch_proposals[:, -1] == b][:, :-1]
batch_element_indices = torch.nonzero(batch_proposals[:, -1] == b).squeeze(1)
# Compute overlaps matrix [proposals, gt_boxes]
if 0 not in gt_boxes.size():
if gt_boxes.shape[1] == 4:
overlaps = mutils.bbox_overlaps_2D(proposals, gt_boxes)
else:
overlaps = mutils.bbox_overlaps_3D(proposals, gt_boxes)
# Determine postive and negative ROIs
roi_iou_max = torch.max(overlaps, dim=1)[0]
# 1. Positive ROIs are those with >= 0.5 IoU with a GT box
positive_roi_bool = roi_iou_max >= (0.5 if cf.dim == 2 else 0.3)
# 2. Negative ROIs are those with < 0.1 with every GT box.
negative_roi_bool = roi_iou_max < (0.1 if cf.dim == 2 else 0.01)
else:
positive_roi_bool = torch.FloatTensor().cuda()
negative_roi_bool = torch.from_numpy(np.array([1]*proposals.shape[0])).cuda()
# Sample Positive ROIs
if 0 not in torch.nonzero(positive_roi_bool).size():
positive_indices = torch.nonzero(positive_roi_bool).squeeze(1)
positive_samples = int(cf.train_rois_per_image * cf.roi_positive_ratio)
rand_idx = torch.randperm(positive_indices.size()[0])
rand_idx = rand_idx[:positive_samples].cuda()
positive_indices = positive_indices[rand_idx]
positive_samples = positive_indices.size()[0]
positive_rois = proposals[positive_indices, :]
# Assign positive ROIs to GT boxes.
positive_overlaps = overlaps[positive_indices, :]
roi_gt_box_assignment = torch.max(positive_overlaps, dim=1)[1]
roi_gt_boxes = gt_boxes[roi_gt_box_assignment, :]
roi_gt_class_ids = gt_class_ids[roi_gt_box_assignment]
# Compute bbox refinement targets for positive ROIs
deltas = mutils.box_refinement(positive_rois, roi_gt_boxes)
std_dev = torch.from_numpy(cf.bbox_std_dev).float().cuda()
deltas /= std_dev
# Assign positive ROIs to GT masks
roi_masks = gt_masks[roi_gt_box_assignment, :, :]
# Compute mask targets
boxes = positive_rois
box_ids = torch.arange(roi_masks.size()[0]).int().cuda()
if len(cf.mask_shape) == 2:
masks = ra2D(cf.mask_shape[0], cf.mask_shape[1], 0)(roi_masks.unsqueeze(1), boxes, box_ids)
else:
masks = ra3D(cf.mask_shape[0], cf.mask_shape[1], cf.mask_shape[2], 0)(roi_masks.unsqueeze(1), boxes, box_ids)
masks = masks.squeeze(1)
# Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with
# binary cross entropy loss.
masks = torch.round(masks)
sample_positive_indices.append(batch_element_indices[positive_indices])
sample_deltas.append(deltas)
sample_masks.append(masks)
sample_class_ids.append(roi_gt_class_ids)
positive_count += positive_samples
else:
positive_samples = 0
# Negative ROIs. Add enough to maintain positive:negative ratio, but at least 1. Sample via SHEM.
if 0 not in torch.nonzero(negative_roi_bool).size():
negative_indices = torch.nonzero(negative_roi_bool).squeeze(1)
r = 1.0 / cf.roi_positive_ratio
b_neg_count = np.max((int(r * positive_samples - positive_samples), 1))
roi_probs_neg = batch_mrcnn_class_scores[batch_element_indices[negative_indices]]
raw_sampled_indices = mutils.shem(roi_probs_neg, b_neg_count, cf.shem_poolsize)
sample_negative_indices.append(batch_element_indices[negative_indices[raw_sampled_indices]])
negative_count += raw_sampled_indices.size()[0]
if len(sample_positive_indices) > 0:
target_deltas = torch.cat(sample_deltas)
target_masks = torch.cat(sample_masks)
target_class_ids = torch.cat(sample_class_ids)
# Pad target information with zeros for negative ROIs.
if positive_count > 0 and negative_count > 0:
sample_indices = torch.cat((torch.cat(sample_positive_indices), torch.cat(sample_negative_indices)), dim=0)
zeros = torch.zeros(negative_count).int().cuda()
target_class_ids = torch.cat([target_class_ids, zeros], dim=0)
zeros = torch.zeros(negative_count, cf.dim * 2).cuda()
target_deltas = torch.cat([target_deltas, zeros], dim=0)
zeros = torch.zeros(negative_count, *cf.mask_shape).cuda()
target_masks = torch.cat([target_masks, zeros], dim=0)
elif positive_count > 0:
sample_indices = torch.cat(sample_positive_indices)
elif negative_count > 0:
sample_indices = torch.cat(sample_negative_indices)
zeros = torch.zeros(negative_count).int().cuda()
target_class_ids = zeros
zeros = torch.zeros(negative_count, cf.dim * 2).cuda()
target_deltas = zeros
zeros = torch.zeros(negative_count, *cf.mask_shape).cuda()
target_masks = zeros
else:
sample_indices = torch.LongTensor().cuda()
target_class_ids = torch.IntTensor().cuda()
target_deltas = torch.FloatTensor().cuda()
target_masks = torch.FloatTensor().cuda()
return sample_indices, target_class_ids, target_deltas, target_masks
############################################################
# Output Handler
############################################################
def refine_detections(rois, probs, deltas, batch_ixs, cf):
"""
Refine classified proposals, filter overlaps and return final detections.
:param rois: (n_proposals, 2 * dim) normalized boxes as proposed by RPN. n_proposals = batch_size * POST_NMS_ROIS
:param probs: (n_proposals, n_classes) softmax probabilities for all rois as predicted by mrcnn classifier.
:param deltas: (n_proposals, n_classes, 2 * dim) box refinement deltas as predicted by mrcnn bbox regressor.
:param batch_ixs: (n_proposals) batch element assignemnt info for re-allocation.
:return: result: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score))
"""
# class IDs per ROI. Since scores of all classes are of interest (not just max class), all are kept at this point.
class_ids = []
fg_classes = cf.head_classes - 1
# repeat vectors to fill in predictions for all foreground classes.
for ii in range(1, fg_classes + 1):
class_ids += [ii] * rois.shape[0]
class_ids = torch.from_numpy(np.array(class_ids)).cuda()
rois = rois.repeat(fg_classes, 1)
probs = probs.repeat(fg_classes, 1)
deltas = deltas.repeat(fg_classes, 1, 1)
batch_ixs = batch_ixs.repeat(fg_classes)
# get class-specific scores and bounding box deltas
idx = torch.arange(class_ids.size()[0]).long().cuda()
class_scores = probs[idx, class_ids]
deltas_specific = deltas[idx, class_ids]
batch_ixs = batch_ixs[idx]
# apply bounding box deltas. re-scale to image coordinates.
std_dev = torch.from_numpy(np.reshape(cf.rpn_bbox_std_dev, [1, cf.dim * 2])).float().cuda()
scale = torch.from_numpy(cf.scale).float().cuda()
refined_rois = mutils.apply_box_deltas_2D(rois, deltas_specific * std_dev) * scale if cf.dim == 2 else \
mutils.apply_box_deltas_3D(rois, deltas_specific * std_dev) * scale
# round and cast to int since we're deadling with pixels now
refined_rois = mutils.clip_to_window(cf.window, refined_rois)
refined_rois = torch.round(refined_rois)
# filter out low confidence boxes
keep = idx
keep_bool = (class_scores >= cf.model_min_confidence)
if 0 not in torch.nonzero(keep_bool).size():
score_keep = torch.nonzero(keep_bool)[:, 0]
pre_nms_class_ids = class_ids[score_keep]
pre_nms_rois = refined_rois[score_keep]
pre_nms_scores = class_scores[score_keep]
pre_nms_batch_ixs = batch_ixs[score_keep]
for j, b in enumerate(mutils.unique1d(pre_nms_batch_ixs)):
bixs = torch.nonzero(pre_nms_batch_ixs == b)[:, 0]
bix_class_ids = pre_nms_class_ids[bixs]
bix_rois = pre_nms_rois[bixs]
bix_scores = pre_nms_scores[bixs]
for i, class_id in enumerate(mutils.unique1d(bix_class_ids)):
ixs = torch.nonzero(bix_class_ids == class_id)[:, 0]
# nms expects boxes sorted by score.
ix_rois = bix_rois[ixs]
ix_scores = bix_scores[ixs]
ix_scores, order = ix_scores.sort(descending=True)
ix_rois = ix_rois[order, :]
if cf.dim == 2:
class_keep = nms_2D(torch.cat((ix_rois, ix_scores.unsqueeze(1)), dim=1), cf.detection_nms_threshold)
else:
class_keep = nms_3D(torch.cat((ix_rois, ix_scores.unsqueeze(1)), dim=1), cf.detection_nms_threshold)
# map indices back.
class_keep = keep[score_keep[bixs[ixs[order[class_keep]]]]]
# merge indices over classes for current batch element
b_keep = class_keep if i == 0 else mutils.unique1d(torch.cat((b_keep, class_keep)))
# only keep top-k boxes of current batch-element
top_ids = class_scores[b_keep].sort(descending=True)[1][:cf.model_max_instances_per_batch_element]
b_keep = b_keep[top_ids]
# merge indices over batch elements.
batch_keep = b_keep if j == 0 else mutils.unique1d(torch.cat((batch_keep, b_keep)))
keep = batch_keep
else:
keep = torch.tensor([0]).long().cuda()
# arrange output
result = torch.cat((refined_rois[keep],
batch_ixs[keep].unsqueeze(1),
class_ids[keep].unsqueeze(1).float(),
class_scores[keep].unsqueeze(1)), dim=1)
return result
def get_results(cf, img_shape, detections, detection_masks, box_results_list=None, return_masks=True):
"""
Restores batch dimension of merged detections, unmolds detections, creates and fills results dict.
:param img_shape:
:param detections: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score)
:param detection_masks: (n_final_detections, n_classes, y, x, (z)) raw molded masks as returned by mask-head.
:param box_results_list: None or list of output boxes for monitoring/plotting.
each element is a list of boxes per batch element.
:param return_masks: boolean. If True, full resolution masks are returned for all proposals (speed trade-off).
:return: results_dict: dictionary with keys:
'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary:
[[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...]
'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, 1] only fg. vs. bg for now.
class-specific return of masks will come with implementation of instance segmentation evaluation.
"""
detections = detections.cpu().data.numpy()
if cf.dim == 2:
detection_masks = detection_masks.permute(0, 2, 3, 1).cpu().data.numpy()
else:
detection_masks = detection_masks.permute(0, 2, 3, 4, 1).cpu().data.numpy()
# restore batch dimension of merged detections using the batch_ix info.
batch_ixs = detections[:, cf.dim*2]
detections = [detections[batch_ixs == ix] for ix in range(img_shape[0])]
mrcnn_mask = [detection_masks[batch_ixs == ix] for ix in range(img_shape[0])]
# for test_forward, where no previous list exists.
if box_results_list is None:
box_results_list = [[] for _ in range(img_shape[0])]
seg_preds = []
# loop over batch and unmold detections.
for ix in range(img_shape[0]):
if 0 not in detections[ix].shape:
boxes = detections[ix][:, :2 * cf.dim].astype(np.int32)
class_ids = detections[ix][:, 2 * cf.dim + 1].astype(np.int32)
scores = detections[ix][:, 2 * cf.dim + 2]
masks = mrcnn_mask[ix][np.arange(boxes.shape[0]), ..., class_ids]
# Filter out detections with zero area. Often only happens in early
# stages of training when the network weights are still a bit random.
if cf.dim == 2:
exclude_ix = np.where((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0]
else:
exclude_ix = np.where(
(boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 5] - boxes[:, 4]) <= 0)[0]
if exclude_ix.shape[0] > 0:
boxes = np.delete(boxes, exclude_ix, axis=0)
class_ids = np.delete(class_ids, exclude_ix, axis=0)
scores = np.delete(scores, exclude_ix, axis=0)
masks = np.delete(masks, exclude_ix, axis=0)
# Resize masks to original image size and set boundary threshold.
full_masks = []
permuted_image_shape = list(img_shape[2:]) + [img_shape[1]]
if return_masks:
for i in range(masks.shape[0]):
# Convert neural network mask to full size mask.
full_masks.append(mutils.unmold_mask_2D(masks[i], boxes[i], permuted_image_shape)
if cf.dim == 2 else mutils.unmold_mask_3D(masks[i], boxes[i], permuted_image_shape))
# if masks are returned, take max over binary full masks of all predictions in this image.
# right now only binary masks for plotting/monitoring. for instance segmentation return all proposal maks.
final_masks = np.max(np.array(full_masks), 0) if len(full_masks) > 0 else np.zeros(
(*permuted_image_shape[:-1],))
# add final perdictions to results.
if 0 not in boxes.shape:
for ix2, score in enumerate(scores):
box_results_list[ix].append({'box_coords': boxes[ix2], 'box_score': score,
'box_type': 'det', 'box_pred_class_id': class_ids[ix2]})
else:
# pad with zero dummy masks.
final_masks = np.zeros(img_shape[2:])
seg_preds.append(final_masks)
# create and fill results dictionary.
results_dict = {'boxes': box_results_list,
'seg_preds': np.round(np.array(seg_preds))[:, np.newaxis].astype('uint8')}
return results_dict
############################################################
# Mask R-CNN Class
############################################################
class net(nn.Module):
def __init__(self, cf, logger):
super(net, self).__init__()
self.cf = cf
self.logger = logger
self.build()
if self.cf.weight_init is not None:
logger.info("using pytorch weight init of type {}".format(self.cf.weight_init))
mutils.initialize_weights(self)
else:
logger.info("using default pytorch weight init")
def build(self):
"""Build Mask R-CNN architecture."""
# Image size must be dividable by 2 multiple times.
h, w = self.cf.patch_size[:2]
if h / 2**5 != int(h / 2**5) or w / 2**5 != int(w / 2**5):
raise Exception("Image size must be dividable by 2 at least 5 times "
"to avoid fractions when downscaling and upscaling."
"For example, use 256, 320, 384, 448, 512, ... etc. ")
if len(self.cf.patch_size) == 3:
d = self.cf.patch_size[2]
if d / 2**3 != int(d / 2**3):
raise Exception("Image z dimension must be dividable by 2 at least 3 times "
"to avoid fractions when downscaling and upscaling.")
# instanciate abstract multi dimensional conv class and backbone class.
conv = mutils.NDConvGenerator(self.cf.dim)
backbone = utils.import_module('bbone', self.cf.backbone_path)
# build Anchors, FPN, RPN, Classifier / Bbox-Regressor -head, Mask-head
self.np_anchors = mutils.generate_pyramid_anchors(self.logger, self.cf)
self.anchors = torch.from_numpy(self.np_anchors).float().cuda()
self.fpn = backbone.FPN(self.cf, conv)
self.rpn = RPN(self.cf, conv)
self.classifier = Classifier(self.cf, conv)
self.mask = Mask(self.cf, conv)
def train_forward(self, batch, is_validation=False):
"""
train method (also used for validation monitoring). wrapper around forward pass of network. prepares input data
for processing, computes losses, and stores outputs in a dictionary.
:param batch: dictionary containing 'data', 'seg', etc.
:return: results_dict: dictionary with keys:
'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary:
[[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...]
'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes].
'monitor_values': dict of values to be monitored.
"""
img = batch['data']
gt_class_ids = batch['roi_labels']
gt_boxes = batch['bb_target']
axes = (0, 2, 3, 1) if self.cf.dim == 2 else (0, 2, 3, 4, 1)
gt_masks = [np.transpose(batch['roi_masks'][ii], axes=axes) for ii in range(len(batch['roi_masks']))]
img = torch.from_numpy(img).float().cuda()
batch_rpn_class_loss = torch.FloatTensor([0]).cuda()
batch_rpn_bbox_loss = torch.FloatTensor([0]).cuda()
# list of output boxes for monitoring/plotting. each element is a list of boxes per batch element.
box_results_list = [[] for _ in range(img.shape[0])]
#forward passes. 1. general forward pass, where no activations are saved in second stage (for performance
# monitoring and loss sampling). 2. second stage forward pass of sampled rois with stored activations for backprop.
rpn_class_logits, rpn_pred_deltas, proposal_boxes, detections, detection_masks = self.forward(img)
mrcnn_class_logits, mrcnn_pred_deltas, mrcnn_pred_mask, target_class_ids, mrcnn_target_deltas, target_mask, \
sample_proposals = self.loss_samples_forward(gt_class_ids, gt_boxes, gt_masks)
# loop over batch
for b in range(img.shape[0]):
if len(gt_boxes[b]) > 0:
# add gt boxes to output list for monitoring.
for ix in range(len(gt_boxes[b])):
box_results_list[b].append({'box_coords': batch['bb_target'][b][ix],
'box_label': batch['roi_labels'][b][ix], 'box_type': 'gt'})
# match gt boxes with anchors to generate targets for RPN losses.
rpn_match, rpn_target_deltas = mutils.gt_anchor_matching(self.cf, self.np_anchors, gt_boxes[b])
# add positive anchors used for loss to output list for monitoring.
pos_anchors = mutils.clip_boxes_numpy(self.np_anchors[np.argwhere(rpn_match == 1)][:, 0], img.shape[2:])
for p in pos_anchors:
box_results_list[b].append({'box_coords': p, 'box_type': 'pos_anchor'})
else:
rpn_match = np.array([-1]*self.np_anchors.shape[0])
rpn_target_deltas = np.array([0])
rpn_match = torch.from_numpy(rpn_match).cuda()
rpn_target_deltas = torch.from_numpy(rpn_target_deltas).float().cuda()
# compute RPN losses.
rpn_class_loss, neg_anchor_ix = compute_rpn_class_loss(rpn_match, rpn_class_logits[b], self.cf.shem_poolsize)
rpn_bbox_loss = compute_rpn_bbox_loss(rpn_target_deltas, rpn_pred_deltas[b], rpn_match)
batch_rpn_class_loss += rpn_class_loss / img.shape[0]
batch_rpn_bbox_loss += rpn_bbox_loss / img.shape[0]
# add negative anchors used for loss to output list for monitoring.
neg_anchors = mutils.clip_boxes_numpy(self.np_anchors[np.argwhere(rpn_match == -1)][0, neg_anchor_ix], img.shape[2:])
for n in neg_anchors:
box_results_list[b].append({'box_coords': n, 'box_type': 'neg_anchor'})
# add highest scoring proposals to output list for monitoring.
rpn_proposals = proposal_boxes[b][proposal_boxes[b, :, -1].argsort()][::-1]
for r in rpn_proposals[:self.cf.n_plot_rpn_props, :-1]:
box_results_list[b].append({'box_coords': r, 'box_type': 'prop'})
# add positive and negative roi samples used for mrcnn losses to output list for monitoring.
if 0 not in sample_proposals.shape:
rois = mutils.clip_to_window(self.cf.window, sample_proposals).cpu().data.numpy()
for ix, r in enumerate(rois):
box_results_list[int(r[-1])].append({'box_coords': r[:-1] * self.cf.scale,
'box_type': 'pos_class' if target_class_ids[ix] > 0 else 'neg_class'})
batch_rpn_class_loss = batch_rpn_class_loss
batch_rpn_bbox_loss = batch_rpn_bbox_loss
# compute mrcnn losses.
mrcnn_class_loss = compute_mrcnn_class_loss(target_class_ids, mrcnn_class_logits)
mrcnn_bbox_loss = compute_mrcnn_bbox_loss(mrcnn_target_deltas, mrcnn_pred_deltas, target_class_ids)
# mrcnn can be run without pixelwise annotations available (Faster R-CNN mode).
# In this case, the mask_loss is taken out of training.
if not self.cf.frcnn_mode:
mrcnn_mask_loss = compute_mrcnn_mask_loss(target_mask, mrcnn_pred_mask, target_class_ids)
else:
mrcnn_mask_loss = torch.FloatTensor([0]).cuda()
loss = batch_rpn_class_loss + batch_rpn_bbox_loss + mrcnn_class_loss + mrcnn_bbox_loss + mrcnn_mask_loss
# monitor RPN performance: detection count = the number of correctly matched proposals per fg-class.
dcount = [list(target_class_ids.cpu().data.numpy()).count(c) for c in np.arange(self.cf.head_classes)[1:]]
# run unmolding of predictions for monitoring and merge all results to one dictionary.
return_masks = self.cf.return_masks_in_val if is_validation else False
results_dict = get_results(self.cf, img.shape, detections, detection_masks,
box_results_list, return_masks=return_masks)
results_dict['torch_loss'] = loss
results_dict['monitor_values'] = {'loss': loss.item(), 'class_loss': mrcnn_class_loss.item()}
results_dict['logger_string'] = \
"loss: {0:.2f}, rpn_class: {1:.2f}, rpn_bbox: {2:.2f}, mrcnn_class: {3:.2f}, mrcnn_bbox: {4:.2f}, " \
"mrcnn_mask: {5:.2f}, dcount {6}".format(loss.item(), batch_rpn_class_loss.item(),
batch_rpn_bbox_loss.item(), mrcnn_class_loss.item(),
mrcnn_bbox_loss.item(), mrcnn_mask_loss.item(), dcount)
return results_dict
def test_forward(self, batch, return_masks=True):
"""
test method. wrapper around forward pass of network without usage of any ground truth information.
prepares input data for processing and stores outputs in a dictionary.
:param batch: dictionary containing 'data'
:param return_masks: boolean. If True, full resolution masks are returned for all proposals (speed trade-off).
:return: results_dict: dictionary with keys:
'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary:
[[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...]
'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes]
"""
img = batch['data']
img = torch.from_numpy(img).float().cuda()
_, _, _, detections, detection_masks = self.forward(img)
results_dict = get_results(self.cf, img.shape, detections, detection_masks, return_masks=return_masks)
return results_dict
def forward(self, img, is_training=True):
"""
:param img: input images (b, c, y, x, (z)).
:return: rpn_pred_logits: (b, n_anchors, 2)
:return: rpn_pred_deltas: (b, n_anchors, (y, x, (z), log(h), log(w), (log(d))))
:return: batch_proposal_boxes: (b, n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ix)) only for monitoring/plotting.
:return: detections: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score)
:return: detection_masks: (n_final_detections, n_classes, y, x, (z)) raw molded masks as returned by mask-head.
"""
# extract features.
fpn_outs = self.fpn(img)
rpn_feature_maps = [fpn_outs[i] for i in self.cf.pyramid_levels]
self.mrcnn_feature_maps = rpn_feature_maps