-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_utils.py
346 lines (279 loc) · 15.1 KB
/
exp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
#!/usr/bin/env python
# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import logging
import subprocess
import os
import torch
from collections import OrderedDict
import plotting
import sys
import importlib.util
import pandas as pd
import pickle
def get_logger(exp_dir):
"""
creates logger instance. writing out info to file and to terminal.
:param exp_dir: experiment directory, where exec.log file is stored.
:return: logger instance.
"""
logger = logging.getLogger('medicaldetectiontoolkit')
logger.setLevel(logging.DEBUG)
log_file = exp_dir + '/exec.log'
hdlr = logging.FileHandler(log_file)
print('Logging to {}'.format(log_file))
logger.addHandler(hdlr)
logger.addHandler(ColorHandler())
logger.propagate = False
return logger
def prep_exp(dataset_path, exp_path, server_env, use_stored_settings=True, is_training=True):
"""
I/O handling, creating of experiment folder structure. Also creates a snapshot of configs/model scripts and copies them to the exp_dir.
This way the exp_dir contains all info needed to conduct an experiment, independent to changes in actual source code. Thus, training/inference of this experiment can be started at anytime. Therefore, the model script is copied back to the source code dir as tmp_model (tmp_backbone).
Provides robust structure for cloud deployment.
:param dataset_path: path to source code for specific data set. (e.g. medicaldetectiontoolkit/lidc_exp)
:param exp_path: path to experiment directory.
:param server_env: boolean flag. pass to configs script for cloud deployment.
:param use_stored_settings: boolean flag. When starting training: If True, starts training from snapshot in existing experiment directory, else creates experiment directory on the fly using configs/model scripts from source code.
:param is_training: boolean flag. distinguishes train vs. inference mode.
:return:
"""
if is_training:
# the first process of an experiment creates the directories and copies the config to exp_path.
if not os.path.exists(exp_path):
os.mkdir(exp_path)
os.mkdir(os.path.join(exp_path, 'plots'))
subprocess.call('cp {} {}'.format(os.path.join(dataset_path, 'configs.py'), os.path.join(exp_path, 'configs.py')), shell=True)
subprocess.call('cp {} {}'.format('default_configs.py', os.path.join(exp_path, 'default_configs.py')), shell=True)
if use_stored_settings:
subprocess.call('cp {} {}'.format('default_configs.py', os.path.join(exp_path, 'default_configs.py')), shell=True)
cf_file = import_module('cf', os.path.join(exp_path, 'configs.py'))
cf = cf_file.configs(server_env)
# only the first process copies the model selcted in configs to exp_path.
if not os.path.isfile(os.path.join(exp_path, 'model.py')):
subprocess.call('cp {} {}'.format(cf.model_path, os.path.join(exp_path, 'model.py')), shell=True)
subprocess.call('cp {} {}'.format(os.path.join(cf.backbone_path), os.path.join(exp_path, 'backbone.py')), shell=True)
# copy the snapshot model scripts from exp_dir back to the source_dir as tmp_model / tmp_backbone.
tmp_model_path = os.path.join(cf.source_dir, 'models', 'tmp_model.py')
tmp_backbone_path = os.path.join(cf.source_dir, 'models', 'tmp_backbone.py')
subprocess.call('cp {} {}'.format(os.path.join(exp_path, 'model.py'), tmp_model_path), shell=True)
subprocess.call('cp {} {}'.format(os.path.join(exp_path, 'backbone.py'), tmp_backbone_path), shell=True)
cf.model_path = tmp_model_path
cf.backbone_path = tmp_backbone_path
else:
# run training with source code info and copy snapshot of model to exp_dir for later testing (overwrite scripts if exp_dir already exists.)
cf_file = import_module('cf', os.path.join(dataset_path, 'configs.py'))
cf = cf_file.configs(server_env)
subprocess.call('cp {} {}'.format(cf.model_path, os.path.join(exp_path, 'model.py')), shell=True)
subprocess.call('cp {} {}'.format(cf.backbone_path, os.path.join(exp_path, 'backbone.py')), shell=True)
subprocess.call('cp {} {}'.format('default_configs.py', os.path.join(exp_path, 'default_configs.py')), shell=True)
subprocess.call('cp {} {}'.format(os.path.join(dataset_path, 'configs.py'), os.path.join(exp_path, 'configs.py')), shell=True)
else:
# for testing, copy the snapshot model scripts from exp_dir back to the source_dir as tmp_model / tmp_backbone.
cf_file = import_module('cf', os.path.join(exp_path, 'configs.py'))
cf = cf_file.configs(server_env)
tmp_model_path = os.path.join(cf.source_dir, 'models', 'tmp_model.py')
tmp_backbone_path = os.path.join(cf.source_dir, 'models', 'tmp_backbone.py')
subprocess.call('cp {} {}'.format(os.path.join(exp_path, 'model.py'), tmp_model_path), shell=True)
subprocess.call('cp {} {}'.format(os.path.join(exp_path, 'backbone.py'), tmp_backbone_path), shell=True)
cf.model_path = tmp_model_path
cf.backbone_path = tmp_backbone_path
cf.exp_dir = exp_path
cf.test_dir = os.path.join(cf.exp_dir, 'test')
cf.plot_dir = os.path.join(cf.exp_dir, 'plots')
cf.experiment_name = exp_path.split("/")[-1]
cf.server_env = server_env
cf.created_fold_id_pickle = False
return cf
def import_module(name, path):
"""
correct way of importing a module dynamically in python 3.
:param name: name given to module instance.
:param path: path to module.
:return: module: returned module instance.
"""
spec = importlib.util.spec_from_file_location(name, path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
class ModelSelector:
'''
saves a checkpoint after each epoch as 'last_state' (can be loaded to continue interrupted training).
saves the top-k (k=cf.save_n_models) ranked epochs. In inference, predictions of multiple epochs can be ensembled to improve performance.
'''
def __init__(self, cf, logger):
self.cf = cf
self.saved_epochs = [-1] * cf.save_n_models
self.logger = logger
def run_model_selection(self, net, optimizer, monitor_metrics, epoch):
# take the mean over all selection criteria in each epoch
non_nan_scores = np.mean(np.array([[0 if ii is None else ii for ii in monitor_metrics['val'][sc]] for sc in self.cf.model_selection_criteria]), 0)
epochs_scores = [ii for ii in non_nan_scores[1:]]
# ranking of epochs according to model_selection_criterion
epoch_ranking = np.argsort(epochs_scores)[::-1] + 1 #epochs start at 1
# if set in configs, epochs < min_save_thresh are discarded from saving process.
epoch_ranking = epoch_ranking[epoch_ranking >= self.cf.min_save_thresh]
# check if current epoch is among the top-k epchs.
if epoch in epoch_ranking[:self.cf.save_n_models]:
save_dir = os.path.join(self.cf.fold_dir, '{}_best_checkpoint'.format(epoch))
if not os.path.exists(save_dir):
os.mkdir(save_dir)
torch.save(net.state_dict(), os.path.join(save_dir, 'params.pth'))
with open(os.path.join(save_dir, 'monitor_metrics.pickle'), 'wb') as handle:
pickle.dump(monitor_metrics, handle)
# save epoch_ranking to keep info for inference.
np.save(os.path.join(self.cf.fold_dir, 'epoch_ranking'), epoch_ranking[:self.cf.save_n_models])
np.save(os.path.join(save_dir, 'epoch_ranking'), epoch_ranking[:self.cf.save_n_models])
self.logger.info(
"saving current epoch {} at rank {}".format(epoch, np.argwhere(epoch_ranking == epoch)))
# delete params of the epoch that just fell out of the top-k epochs.
for se in [int(ii.split('_')[0]) for ii in os.listdir(self.cf.fold_dir) if 'best_checkpoint' in ii]:
if se in epoch_ranking[self.cf.save_n_models:]:
subprocess.call('rm -rf {}'.format(os.path.join(self.cf.fold_dir, '{}_best_checkpoint'.format(se))), shell=True)
self.logger.info('deleting epoch {} at rank {}'.format(se, np.argwhere(epoch_ranking == se)))
state = {
'epoch': epoch,
'state_dict': net.state_dict(),
'optimizer': optimizer.state_dict(),
}
# save checkpoint of current epoch.
save_dir = os.path.join(self.cf.fold_dir, 'last_checkpoint'.format(epoch))
if not os.path.exists(save_dir):
os.mkdir(save_dir)
torch.save(state, os.path.join(save_dir, 'params.pth'))
np.save(os.path.join(save_dir, 'epoch_ranking'), epoch_ranking[:self.cf.save_n_models])
with open(os.path.join(save_dir, 'monitor_metrics.pickle'), 'wb') as handle:
pickle.dump(monitor_metrics, handle)
def load_checkpoint(checkpoint_path, net, optimizer):
checkpoint_params = torch.load(os.path.join(checkpoint_path, 'params.pth'))
net.load_state_dict(checkpoint_params['state_dict'])
optimizer.load_state_dict(checkpoint_params['optimizer'])
with open(os.path.join(checkpoint_path, 'monitor_metrics.pickle'), 'rb') as handle:
monitor_metrics = pickle.load(handle)
starting_epoch = checkpoint_params['epoch'] + 1
return starting_epoch, monitor_metrics
def prepare_monitoring(cf):
"""
creates dictionaries, where train/val metrics are stored.
"""
metrics = {}
# first entry for loss dict accounts for epoch starting at 1.
metrics['train'] = OrderedDict()
metrics['val'] = OrderedDict()
metric_classes = []
if 'rois' in cf.report_score_level:
metric_classes.extend([v for k, v in cf.class_dict.items()])
if 'patient' in cf.report_score_level:
metric_classes.extend(['patient'])
for cl in metric_classes:
metrics['train'][cl + '_ap'] = [None]
metrics['val'][cl + '_ap'] = [None]
if cl == 'patient':
metrics['train'][cl + '_auc'] = [None]
metrics['val'][cl + '_auc'] = [None]
metrics['train']['monitor_values'] = [[] for _ in range(cf.num_epochs + 1)]
metrics['val']['monitor_values'] = [[] for _ in range(cf.num_epochs + 1)]
# generate isntance of monitor plot class.
TrainingPlot = plotting.TrainingPlot_2Panel(cf)
return metrics, TrainingPlot
def create_csv_output(results_list, cf, logger):
"""
Write out test set predictions to .csv file. output format is one line per prediction:
PatientID | PredictionID | [y1 x1 y2 x2 (z1) (z2)] | score | pred_classID
Note, that prediction coordinates correspond to images as loaded for training/testing and need to be adapted when
plotted over raw data (before preprocessing/resampling).
:param results_list: [[patient_results, patient_id], [patient_results, patient_id], ...]
"""
logger.info('creating csv output file at {}'.format(os.path.join(cf.exp_dir, 'results.csv')))
predictions_df = pd.DataFrame(columns = ['patientID', 'predictionID', 'coords', 'score', 'pred_classID'])
for r in results_list:
pid = r[1]
#optionally load resampling info from preprocessing to match output predictions with raw data.
#with open(os.path.join(cf.exp_dir, 'test_resampling_info', pid), 'rb') as handle:
# resampling_info = pickle.load(handle)
for bix, box in enumerate(r[0][0]):
assert box['box_type'] == 'det', box['box_type']
coords = box['box_coords']
score = box['box_score']
pred_class_id = box['box_pred_class_id']
out_coords = []
if score >= cf.min_det_thresh:
out_coords.append(coords[0]) #* resampling_info['scale'][0])
out_coords.append(coords[1]) #* resampling_info['scale'][1])
out_coords.append(coords[2]) #* resampling_info['scale'][0])
out_coords.append(coords[3]) #* resampling_info['scale'][1])
if len(coords) > 4:
out_coords.append(coords[4]) #* resampling_info['scale'][2] + resampling_info['z_crop'])
out_coords.append(coords[5]) #* resampling_info['scale'][2] + resampling_info['z_crop'])
predictions_df.loc[len(predictions_df)] = [pid, bix, out_coords, score, pred_class_id]
try:
fold = cf.fold
except:
fold = 'hold_out'
predictions_df.to_csv(os.path.join(cf.exp_dir, 'results_{}.csv'.format(fold)), index=False)
class _AnsiColorizer(object):
"""
A colorizer is an object that loosely wraps around a stream, allowing
callers to write text to the stream in a particular color.
Colorizer classes must implement C{supported()} and C{write(text, color)}.
"""
_colors = dict(black=30, red=31, green=32, yellow=33,
blue=34, magenta=35, cyan=36, white=37, default=39)
def __init__(self, stream):
self.stream = stream
@classmethod
def supported(cls, stream=sys.stdout):
"""
A class method that returns True if the current platform supports
coloring terminal output using this method. Returns False otherwise.
"""
if not stream.isatty():
return False # auto color only on TTYs
try:
import curses
except ImportError:
return False
else:
try:
try:
return curses.tigetnum("colors") > 2
except curses.error:
curses.setupterm()
return curses.tigetnum("colors") > 2
except:
raise
# guess false in case of error
return False
def write(self, text, color):
"""
Write the given text to the stream in the given color.
@param text: Text to be written to the stream.
@param color: A string label for a color. e.g. 'red', 'white'.
"""
color = self._colors[color]
self.stream.write('\x1b[%sm%s\x1b[0m' % (color, text))
class ColorHandler(logging.StreamHandler):
def __init__(self, stream=sys.stdout):
super(ColorHandler, self).__init__(_AnsiColorizer(stream))
def emit(self, record):
msg_colors = {
logging.DEBUG: "green",
logging.INFO: "default",
logging.WARNING: "red",
logging.ERROR: "red"
}
color = msg_colors.get(record.levelno, "blue")
self.stream.write(record.msg + "\n", color)