forked from mfms-ncsu/Matroid-Parity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
executable file
·268 lines (225 loc) · 10.8 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import dependency_graph as dg
import base_graph as bg
UNLABELED_SER = 99999999
NO_BLOSSOM = -1
VERBOSE = False
class Transform(dg.Element):
def __init__(self, tip1: dg.Element, tip2: dg.Element, bud: dg.Element):
super().__init__(None)
self.pair = tip1.pair
self.bud = bud
self.tip1 = tip1
self.tip2 = tip2
self.edge = (tip1, tip2)
class Property:
def __init__(self, element: dg.Element):
self.element = element
self.serial: int = UNLABELED_SER
self.previous: dg.Element = None
self.reverse: dg.Element = None
self.blossom_id = NO_BLOSSOM
self.is_tip = False
def log(*args, **kwargs):
if VERBOSE:
print(*args, **kwargs)
class Solver:
def __init__(self, dep_graph: dg.DependencyGraph):
self.next_serial: int = 0
self.next_element_id: int = max(dep_graph.elements.keys()) + 1
self.next_blossom_id: int = 0
self.blossoms: list[set[dg.Element]] = []
self.dep_graph = dep_graph
self.elem_properties: dict[dg.Element, Property] = {elem: Property(elem) for elem in self.dep_graph.elements.values()}
self.queue: list[dg.Element] = []
def _label_(self, elem: dg.Element, previous: dg.Element, reverse: dg.Element = None):
self.elem_properties[elem].serial = self.next_serial
self.next_serial += 1
self.elem_properties[elem].previous = previous
self.elem_properties[elem].reverse = reverse
self.queue.append(elem)
log('\t\t\tLabelled',elem,'with s:',self.next_serial-1, 'p:', previous)
def _compute_transform_(self, bud: dg.Element, tip1: dg.Element, tip2: dg.Element):
x = Transform(tip1, tip2, bud)
x.element_id = self.next_element_id
x.pair_id = x.tip1.pair_id
self.dep_graph.add_element(self.next_element_id, x)
self.next_element_id += 1
for a in tip1.adjacency:
if a in tip2.adjacency:
continue
self.dep_graph.make_adjacent(x, a)
for a in tip2.adjacency:
if a in tip1.adjacency:
continue
self.dep_graph.make_adjacent(x, a)
self.elem_properties[x] = Property(x)
log('\t\t\tCreated transform', x)
log('\t\t\t with adj:', ' '.join([str(e) for e in x.adjacency]))
return x
def _merge_into_blossom_(self, ebunch: list[dg.Element]):
new_blossom: set[dg.Element] = set(ebunch)
blossoms_to_merge = [self.elem_properties[e].blossom_id for e in ebunch if self.elem_properties[e].blossom_id != NO_BLOSSOM]
for e in ebunch:
self.elem_properties[e].blossom_id = self.next_blossom_id
for blossom in blossoms_to_merge:
for e, p in self.elem_properties.items():
if p.blossom_id == blossom:
new_blossom.add(e)
p.blossom_id = self.next_blossom_id
self.next_blossom_id += 1
log('\t\t\tCreated blossom:',new_blossom)
self.blossoms.append(new_blossom)
def _compute_degenerate_blossom_(self, bud: dg.Element, tip1: dg.Element, tip2: dg.Element):
x = self._compute_transform_(bud, tip1, tip2)
self._merge_into_blossom_([tip1, tip2, x])
self.elem_properties[tip1].is_tip = True
self.elem_properties[tip2].is_tip = True
self._label_(x, bud)
def _compute_search_path_(self, elem: dg.Element, detransform=False) -> list[dg.Element]:
props = self.elem_properties[elem]
if not isinstance(elem, Transform):
if props.previous is None:
return [elem]
if props.reverse is not None:
rev_path = self._compute_search_path_(props.reverse, detransform)
rev_path = list(reversed(rev_path[:rev_path.index(elem)+1]))
return rev_path + self._compute_search_path_(props.previous, detransform)
else:
return [elem, elem.pair] + self._compute_search_path_(props.previous, detransform)
else:
if props.reverse is None:
return [elem.tip1 if detransform else elem, elem.pair] + self._compute_search_path_(props.previous, detransform)
else:
rev_path = self._compute_search_path_(props.reverse, detransform)
rev_path = list(reversed(rev_path[:rev_path.index(elem.tip1)]))
return [elem.tip1 if detransform else elem] + rev_path + self._compute_search_path_(props.previous, detransform)
def _compute_primitive_bud_(self, elem1: dg.Element, elem2: dg.Element):
path1 = self._compute_search_path_(elem1)
path2 = self._compute_search_path_(elem2)
for b in path1:
blossom = None if self.elem_properties[b].blossom_id == NO_BLOSSOM else self.blossoms[self.elem_properties[b].blossom_id]
for x in path2:
if blossom is None:
if b == x:
return b
elif x in blossom:
return b
return None
def _augment_(self, elem1: dg.Element, elem2: dg.Element):
path1 = self._compute_search_path_(elem1, detransform=True)
path2 = self._compute_search_path_(elem2, detransform=True)
for e in path1 + path2:
if e.is_in_basis:
e.is_in_basis = False
self.dep_graph.basis.remove(e)
else:
e.is_in_basis = True
self.dep_graph.basis.append(e)
def _blossom_(self, elem1: dg.Element, elem2: dg.Element, root_bud: dg.Element):
bud_blossom = self.elem_properties[root_bud].blossom_id
path1 = self._compute_search_path_(elem1)
path2 = self._compute_search_path_(elem2)
bud1: dg.Element = None
bud2: dg.Element = None
bud1_index: int = -1
bud2_index: int = -1
for i, e in enumerate(path1):
if (bud_blossom != NO_BLOSSOM and self.elem_properties[e].blossom_id == bud_blossom) or e == root_bud:
bud1 = e
bud1_index = i
break
for i, e in enumerate(path2):
if (bud_blossom != NO_BLOSSOM and self.elem_properties[e].blossom_id == bud_blossom) or e == root_bud:
bud2 = e
bud2_index = i
break
tip1: dg.Element = None
tip2: dg.Element = None
if bud1 == bud2:
tip1 = path1[bud1_index - 1]
tip2 = path2[bud2_index - 1]
to_label: dict[dg.Element, tuple[int, dg.Element, dg.Element]] = {}
for i, e in enumerate(path1):
if e == tip1 or e == bud1:
break
e_p = self.elem_properties[e]
if e_p.serial != UNLABELED_SER:
continue
if e_p.blossom_id != NO_BLOSSOM and not e_p.is_tip:
continue
#previous = elem2 if i <= 1 else path1[i-2]
to_label[e] = (self.elem_properties[e.pair].serial, elem1, elem2)
for e in path2:
if e == tip2 or e == bud2:
break
e_p = self.elem_properties[e]
if e_p.serial != UNLABELED_SER:
continue
if e_p.blossom_id != NO_BLOSSOM and not e_p.is_tip:
continue
#previous = elem1 if i <= 1 else path2[i-2]
to_label[e] = (self.elem_properties[e.pair].serial, elem2, elem1)
label_list = sorted(to_label.keys(), reverse=True, key=lambda e: to_label[e][0])
for g in label_list:
g_p = self.elem_properties[g]
if g_p.blossom_id != NO_BLOSSOM and not g_p.is_tip:
continue
self._label_(g, to_label[g][2], reverse=to_label[g][1])
if g_p.is_tip:
g_p.is_tip = False
for e in self.elem_properties.keys():
if self.elem_properties[e].blossom_id == g_p.blossom_id:
self.elem_properties[e].is_tip = False
# The new blossom always contains x1 and x2
new_blossom = [elem1, elem2]
if tip1 is not None:
x = self._compute_transform_(bud1, tip1, tip2)
self._label_(x, elem2, reverse=elem1)
new_blossom.append(x)
for e in path1:
if e == bud1:
break
new_blossom.append(e)
for e in path2:
if e == bud2:
break
new_blossom.append(e)
if tip1 is not None:
self.elem_properties[tip1].is_tip = True
self.elem_properties[tip2].is_tip = True
self._merge_into_blossom_(new_blossom)
def improve_matching(self):
log('Improving matching:', self.dep_graph.basis)
if VERBOSE:
print(self.dep_graph)
# We label all singletons
for singleton_id in self.dep_graph.singletons:
singleton = self.dep_graph.elements[singleton_id]
log('\tLabelling singleton', singleton)
self._label_(singleton, None)
while len(self.queue) > 0:
current = self.queue.pop(0)
current.adjacency.sort(key=lambda e: self.elem_properties[e].serial)
log('\tScanning element', current)
for adjacent in current.adjacency:
# If the adjacent is equivalent to the current
if self.elem_properties[adjacent].blossom_id != NO_BLOSSOM and self.elem_properties[adjacent].blossom_id == self.elem_properties[current].blossom_id:
continue
if self.elem_properties[adjacent].serial != UNLABELED_SER and self.elem_properties[adjacent].serial < self.elem_properties[current].serial:
bud = self._compute_primitive_bud_(current, adjacent)
if bud is None:
log('\t\tAugment step/', current, adjacent)
self._augment_(current, adjacent)
return True
else:
log('\t\tBlossom step/ bud:', bud, 'x1:', current, 'x2:', adjacent)
self._blossom_(current, adjacent, bud)
elif self.elem_properties[adjacent].serial == UNLABELED_SER and self.elem_properties[adjacent.pair].serial == UNLABELED_SER and self.elem_properties[adjacent].blossom_id == NO_BLOSSOM:
adjacent_pair = adjacent.pair
if adjacent_pair in current.adjacency:
log('\t\tDegenerate blossom step/ bud:', current, 'x1:', adjacent, 'x2:', adjacent_pair)
self._compute_degenerate_blossom_(current, adjacent, adjacent_pair)
else:
log('\t\tLabel step/', adjacent)
self._label_(adjacent_pair, current)
return False