diff --git a/docs/API/Models/MonteCarloControl.md b/docs/API/Models/MonteCarloControl.md new file mode 100644 index 0000000..49f06c2 --- /dev/null +++ b/docs/API/Models/MonteCarloControl.md @@ -0,0 +1,43 @@ +# [API Reference](../../API.md) - [Models](../Models.md) - REINFORCE + +MonteCarloControl is a neural network with reinforcement learning capabilities. It can predict any positive numbers of discrete values. + +## Constructors + +### new() + +Create new model object. If any of the arguments are nil, default argument values for that argument will be used. + +``` +MonteCarloControl.new({discountFactor: number}): ModelObject +``` + +#### Parameters: + +* discountFactor: The higher the value, the more likely it focuses on long-term outcomes. The value must be set between 0 and 1. + +#### Returns: + +* ModelObject: The generated model object. + +## Functions + +### setParameters() + +Set model's parameters. When any of the arguments are nil, previous argument values for that argument will be used. + +``` +MonteCarloControl:setParameters({discountFactor: number}) +``` + +#### Parameters: + +* discountFactor: The higher the value, the more likely it focuses on long-term outcomes. The value must be set between 0 and 1. + +## Inherited From + +* [ReinforcementLearningBaseModel](ReinforcementLearningBaseModel.md) + +## References + +* [Forgetting Early Estimates in Monte Carlo Control Methods](https://ev.fe.uni-lj.si/3-2015/Vodopivec.pdf) \ No newline at end of file