-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathapp.py
59 lines (46 loc) · 2.01 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from langchain import PromptTemplate
from langchain_community.llms import LlamaCpp
from langchain.chains import RetrievalQA
from langchain_community.embeddings import SentenceTransformerEmbeddings
from fastapi import FastAPI, Request, Form, Response
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
from fastapi.encoders import jsonable_encoder
from qdrant_client import QdrantClient
from langchain_community.vectorstores import Qdrant
import settings
import json
app = FastAPI()
templates = Jinja2Templates(directory="templates")
app.mount("/static", StaticFiles(directory="static"), name="static")
local_llm = settings.LLM_PATH
llm = LlamaCpp(
model_path= local_llm,
temperature=0.3,
max_tokens=2048,
top_p=1
)
print("LLM Initialized....")
embeddings = SentenceTransformerEmbeddings(model_name=settings.EMBEDDINGS)
client = QdrantClient(
url=settings.VECTOR_DB_URL, prefer_grpc=False
)
db = Qdrant(client=client, embeddings=embeddings, collection_name=settings.VECTOR_DB_NAME)
prompt = PromptTemplate(template=settings.PROMPT_TEMPLATE, input_variables=['context', 'question'])
retriever = db.as_retriever(search_kwargs={"k":1})
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.post("/get_response")
async def get_response(query: str = Form(...)):
chain_type_kwargs = {"prompt": prompt}
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs=chain_type_kwargs, verbose=True)
response = qa(query)
print(response)
answer = response['result']
source_document = response['source_documents'][0].page_content
doc = response['source_documents'][0].metadata['source']
response_data = jsonable_encoder(json.dumps({"answer": answer, "source_document": source_document, "doc": doc}))
res = Response(response_data)
return res