-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREINFORCE with Baseline Final.py
194 lines (141 loc) · 4.8 KB
/
REINFORCE with Baseline Final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python
# coding: utf-8
# ## Importing Libraries
# In[ ]:
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import gym
import matplotlib.pyplot as plt
# Importing necessary libraries
import warnings
warnings.simplefilter('ignore')
# ## REINFORCE with Baseline
# In[ ]:
# Loss Function
def get_error_vals(actor, critic, states, actions, log_probs, rewards, gamma, t):
estimated_value = critic(states[t])
G = torch.sum(torch.FloatTensor([(gamma**(k-t-1))*r for k, r in enumerate(rewards[t:])]))
td_error = G - estimated_value
return td_error, G, estimated_value
# Training Loop
def train(actor, critic, actor_optimizer, critic_optimizer, gamma):
list_R = []
for epoch in range(100):
state, _ = env.reset()
state = torch.Tensor(state)
log_probs = []
states = [state]
values = []
rewards = []
actions = []
while True:
action_probs = actor(state)
action = torch.multinomial(action_probs, 1).item()
next_state, reward, terminated, truncated, _ = env.step(action)
next_state = torch.Tensor(next_state)
log_probs.append(torch.log(action_probs[action]))
values.append(critic(state))
rewards.append(reward)
actions.append(action)
state = next_state
states.append(state)
if terminated or truncated:
break
actor_optimizer.zero_grad()
critic_optimizer.zero_grad()
for t in range(len(actions)):
td_error, G, estimated_value = get_error_vals(actor, critic, torch.stack(states),
torch.tensor(actions),
torch.stack(log_probs),
rewards,
gamma,
t)
actor_loss = -1 * (gamma ** t) * (log_probs[t] * td_error)
critic_loss = 0.5 * (td_error ** 2)
actor_loss.backward(retain_graph=True)
critic_loss.backward()
actor_optimizer.step()
critic_optimizer.step()
list_R.append(np.sum(rewards))
plt.plot(range(len(list_R)), list_R)
plt.show()
# In[ ]:
# Actor Network
class Actor(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.fc1 = nn.Linear(in_dim, 128)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(128, out_dim)
def forward(self, state):
x = self.fc1(state)
x = self.relu(x)
x = self.fc2(x)
action_probs = nn.functional.softmax(x, dim=-1)
return action_probs
# Critic Network
class Critic(nn.Module):
def __init__(self, in_dim):
super().__init__()
self.fc1 = nn.Linear(in_dim, 128)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(128, 1)
def forward(self, state):
x = self.fc1(state)
x = self.relu(x)
x = self.fc2(x)
return x
# ## CartPole
# In[ ]:
# MDP Setup
env = gym.make('CartPole-v1')
# Hyperparameter Tuning
lr_vals = [1e-4, 1e-3, 1e-2, 1e-1]
gamma = 0.99
for lr in lr_vals:
actor = Actor(4,2)
critic = Critic(4)
actor_optimizer = optim.Adam(actor.parameters(), lr=lr)
critic_optimizer = optim.Adam(critic.parameters(), lr=lr)
print(f'Learning Rate: {lr}, Gamma: {gamma}')
print()
train(actor, critic, actor_optimizer, critic_optimizer, gamma=gamma)
print()
print('-----------------------------------------------------------------')
# ## Mountain Car
# In[ ]:
# MDP Setup
env = gym.make('MountainCar-v0')
# Hyperparameter Tuning
lr_vals = [1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 1e-3, 1e-2, 1e-1]
gamma = 0.99
for lr in lr_vals:
actor = Actor(2,2)
critic = Critic(2)
actor_optimizer = optim.Adam(actor.parameters(), lr=lr)
critic_optimizer = optim.Adam(critic.parameters(), lr=lr)
print(f'Learning Rate: {lr}, Gamma: {gamma}')
print()
train(actor, critic, actor_optimizer, critic_optimizer, gamma=gamma)
print()
print('-----------------------------------------------------------------')
# ## Acrobot
# In[ ]:
# MDP Setup
env = gym.make('Acrobot-v1')
# Hyperparameter Tuning
lr_vals = [1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 1e-3, 1e-2, 1e-1]
gamma = 0.99
for lr in lr_vals:
actor = Actor(6,3)
critic = Critic(6)
actor_optimizer = optim.Adam(actor.parameters(), lr=lr)
critic_optimizer = optim.Adam(critic.parameters(), lr=lr)
print(f'Learning Rate: {lr}, Gamma: {gamma}')
print()
train(actor, critic, actor_optimizer, critic_optimizer, gamma=gamma)
print()
print('-----------------------------------------------------------------')
# In[ ]: