-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_train.py
128 lines (114 loc) · 4.53 KB
/
model_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torchvision.transforms as transforms
from cassandra.cluster import Cluster
from cassandra.auth import PlainTextAuthProvider
from torch.utils.data import Dataset, DataLoader
from astra_dataset import AstraDataset
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pickle as pkl
import auth
cloud_config = {'secure_connect_bundle': auth.scb_path}
auth_provider = PlainTextAuthProvider(auth.auth_id, auth.auth_token)
cluster = Cluster(cloud=cloud_config, auth_provider=auth_provider)
session = cluster.connect()
train_dataset = AstraDataset(
cloud_config,
auth_provider,
"mnist_digits",
"raw_train",
100,
transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
)
train_loader = DataLoader(train_dataset, batch_size=10, shuffle=True)
test_dataset = AstraDataset(
cloud_config,
auth_provider,
"mnist_digits",
"raw_test",
100,
transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
)
test_loader = DataLoader(test_dataset, batch_size=10, shuffle=True)
n_epochs = 1
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
print(example_data.shape)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
momentum=momentum)
train_losses = []
train_counter = []
test_losses = []
test_counter = [i*len(train_loader.dataset) for i in range(n_epochs + 1)]
def train(epoch):
network.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = network(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
description_string = 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item())
train_losses.append(loss.item())
train_counter.append(
(batch_idx*64) + ((epoch-1)*len(train_loader.dataset)))
network_state = bytearray(pkl.dumps(network.state_dict()))
optimizer_state = bytearray(pkl.dumps(optimizer.state_dict()))
#torch.save(network.state_dict(), 'results/model.pth')
#torch.save(optimizer.state_dict(), 'results/optimizer.pth')
query = "INSERT INTO mnist_digits.models (id, network, optimizer, upload_date, comments) VALUES (uuid(), %s, %s, toTimestamp(now()), %s);"
values = [network_state, optimizer_state, description_string]
session.execute(query, values)
def test():
network.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = network(data)
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
test_losses.append(test_loss)
print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
test()
for epoch in range(1, n_epochs + 1):
train(epoch)
test()