-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagenet_train.py
541 lines (445 loc) · 21.7 KB
/
imagenet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
from __future__ import print_function
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from models.imagenet.efficientnet_model import EfficientNet
import models.imagenet as customized_models
from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig
from utils.dataloaders import *
from tensorboardX import SummaryWriter
from utils.choose_best import best_accuracy
from torch.optim.lr_scheduler import ReduceLROnPlateau
from utils.specified_scheduler import *
default_model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
customized_models_names = sorted(name for name in customized_models.__dict__
if name.islower() and not name.startswith("__")
and callable(customized_models.__dict__[name]))
for name in customized_models.__dict__:
if name.islower() and not name.startswith("__") and callable(customized_models.__dict__[name]):
models.__dict__[name] = customized_models.__dict__[name]
efficientnet_models_names = ['efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3', 'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7']
model_names = default_model_names + customized_models_names + efficientnet_models_names
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('-d', '--data', metavar='DIR',
help='path to dataset')
parser.add_argument('--data-backend', metavar='BACKEND', default='pytorch',
choices=DATA_BACKEND_CHOICES)
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--id', '--init-decay', default=0.9, type=float,
metavar='W', help='initial weight decay (default: 0.9)',
dest='init_decay')
parser.add_argument('--tw', '--track-weights', default=10000, type=int,
metavar='W', help='number of weights to track (default: 100000)',
dest='track_weights')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--early-term', default=False, type=bool,
help='Set to compare the accuracy of parallel trainings and terminate if worst than others.')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--lr-decay', type=str, default='step',
help='mode for learning rate decay')
parser.add_argument('--step', type=int, default=30,
help='interval for learning rate decay in step mode')
parser.add_argument('--schedule', type=int, nargs='+', default=[150, 255],
help='decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--warmup', action='store_true',
help='set lower initial learning rate to warm up the training')
parser.add_argument('-c', '--checkpoint', default='checkpoints', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoints)')
parser.add_argument('--use_qe', default='True', type=str, help='enable quantile estimation')
parser.add_argument('--q-init', default=1e-2, type=float,
metavar='QI', help='q init (default: 1e-2)')
parser.add_argument('--q-step', default=1e-6, type=float,
metavar='QS', help='q step (default: 1e-6)')
parser.add_argument('--q-sf', default=False, type=bool,
metavar='QF', help='q sf (default: False)')
parser.add_argument('--width-mult', type=float, default=1.0, help='MobileNet model width multiplier.')
parser.add_argument('--input-size', type=int, default=224, help='MobileNet model input resolution')
parser.add_argument('--weight', default='', type=str, metavar='WEIGHT',
help='path to pretrained weight (default: none)')
lr_schedul = None
best_prec1 = 0
cp_logger=None #Logger(os.path.join(args.checkpoint, 'cp_log.txt'), title=title)
def main():
global args, best_prec1, cp_logger, lr_schedul
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
#np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
args.distributed = args.world_size > 1
if args.distributed:
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size)
print("#Weights to track '{}'".format(args.track_weights))
# create model
print("=> creating model '{}'".format(args.arch))
model = None
if args.arch.startswith('mobilenetv2'):
model = models.__dict__[args.arch](width_mult=args.width_mult)
elif args.arch.startswith('efficientnet'):
print('efficientnet')
model = EfficientNet.from_name(args.arch)
else:
model = models.__dict__[args.arch]()
if not args.distributed:
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
model_weights_tot = sum([param.nelement() for param in model.parameters()])
print(model)
print(model_weights_tot)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
if args.use_qe == 'True':
target_quantile = 1 - (args.track_weights / model_weights_tot)
print('target quantile: ', target_quantile)
else:
target_quantile = None
print('Use exact sort without qe')
print("Baseline Optimizer is used!")
optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
if args.lr_decay == 'specified':
lr_schedul = lr_scheduled('schedule.csv')
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.2, patience=5, verbose=False, threshold=1e-1, threshold_mode='abs', cooldown=0, min_lr=0.002, eps=1e-8)
# optionally resume from a checkpoint
title = 'ImageNet-' + args.arch
if not os.path.isdir(args.checkpoint):
mkdir_p(args.checkpoint)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
args.checkpoint = os.path.dirname(args.resume)
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title, resume=True)
cp_logger = Logger(os.path.join(args.checkpoint, 'cp_log.txt'), title=title, resume=True)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
cp_logger = Logger(os.path.join(args.checkpoint, 'cp_log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
cp_logger.set_names(['itteration in epoch', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Train Acc. top5', 'Valid Acc.', 'Valid Acc. top5', 'batch speed'])
else:
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
cp_logger = Logger(os.path.join(args.checkpoint, 'cp_log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
cp_logger.set_names(['itteration in epoch', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Train Acc. top5', 'Valid Acc.', 'Valid Acc. top5', 'batch speed'])
cudnn.benchmark = True
# Data loading code
if args.data_backend == 'pytorch':
get_train_loader = get_pytorch_train_loader
get_val_loader = get_pytorch_val_loader
elif args.data_backend == 'dali-gpu':
get_train_loader = get_dali_train_loader(dali_cpu=False)
get_val_loader = get_dali_val_loader()
elif args.data_backend == 'dali-cpu':
get_train_loader = get_dali_train_loader(dali_cpu=True)
get_val_loader = get_dali_val_loader()
train_loader, train_loader_len = get_train_loader(args.data, args.batch_size, workers=args.workers, input_size=args.input_size)
val_loader, val_loader_len = get_val_loader(args.data, args.batch_size, workers=args.workers, input_size=args.input_size)
if args.evaluate:
from collections import OrderedDict
if os.path.isfile(args.weight):
print("=> loading pretrained weight '{}'".format(args.weight))
source_state = torch.load(args.weight)
target_state = OrderedDict()
for k, v in source_state.items():
if k[:7] != 'module.':
k = 'module.' + k
target_state[k] = v
model.load_state_dict(target_state)
else:
print("=> no weight found at '{}'".format(args.weight))
validate(val_loader, val_loader_len, model, criterion)
return
# visualization
writer = SummaryWriter(os.path.join(args.checkpoint, 'logs'))
print("Training started!", flush=True)
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
# the folder name to dump logs and files
folder = 'baseline'
best_reported_acc = best_accuracy(current_epoch=epoch, run_name='ImageNet_'+args.arch, folder=folder)
print("Best reported Valid Acc. for epoch: "+str(epoch)+" is: "+str(best_reported_acc), flush=True)
print('\nEpoch: [%d | %d]' % (epoch + 1, args.epochs), flush=True)
# train for one epoch
train_loss, train_acc = train(train_loader, train_loader_len, model, criterion, optimizer, epoch)
# evaluate on validation set
val_loss, prec1 = validate(val_loader, val_loader_len, model, criterion)
lr = optimizer.param_groups[0]['lr']
# append logger file
logger.append([lr, train_loss, val_loss, train_acc, prec1])
# tensorboardX
writer.add_scalar('learning rate', lr, epoch + 1)
writer.add_scalars('loss', {'train loss': train_loss, 'validation loss': val_loss}, epoch + 1)
writer.add_scalars('accuracy', {'train accuracy': train_acc, 'validation accuracy': prec1}, epoch + 1)
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best, checkpoint=args.checkpoint)
if (epoch > 5) & (epoch % 5 == 4): # save every 5 epoch!
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, False, checkpoint=args.checkpoint, filename=str(epoch+1)+'_'+'checkpoint.pth.tar')
if args.lr_decay == 'plateau2':
scheduler.step(val_loss)
# Early terminations
print("Accuracy here: "+str(prec1) + " vs. "+str(best_reported_acc)+" best accuracy reported!", flush=True)
if early_terminate(epoch, prec1, best_reported_acc):
print("Early Termination on epoch "+str(epoch))
break
logger.close()
logger.plot()
savefig(os.path.join(args.checkpoint, 'log.eps'))
cp_logger.close()
#cp_logger.plot()
#savefig(os.path.join(args.checkpoint, 'cp_log.eps'))
writer.close()
print('Best accuracy:')
print(best_prec1, flush=True)
def early_terminate(epoch, prec1, best_reported_acc):
if not args.early_term:
#print("Will not check for early terminate")
return False
print("Will check for early terminate!")
if prec1 > best_reported_acc:
return False
# if epoch < 1: # how many epochs to skip
# if prec1 < (best_reported_acc/2):
# return True
# return False
betha = 0.5
alpha = 1 #4 # which epoch to start matching exactly
coef = 1
if epoch < alpha:
coef = 1 - betha*( (alpha-epoch)/alpha ) # after alpha epochs, the
if prec1 < coef * best_reported_acc:
return True
else:
return False
def train(train_loader, train_loader_len, model, criterion, optimizer, epoch):
global cp_logger
bar = Bar('Processing', max=train_loader_len)
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
if not args.lr_decay == 'plateau2':
adjust_learning_rate(optimizer, epoch, i, train_loader_len)
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
#cp_logger.append([i, losses.avg, 0, top1.avg, top1.avg, 0, 0, batch_time.avg])
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=i + 1,
size=train_loader_len,
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def validate(val_loader, val_loader_len, model, criterion):
global cp_logger
bar = Bar('Processing', max=val_loader_len)
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda(non_blocking=True)
with torch.no_grad():
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# itteration logger
#cp_logger.append([i, 0, losses.avg, 0, 0, top1.avg, top1.avg, batch_time.avg])
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=i + 1,
size=val_loader_len,
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def save_checkpoint(state, is_best, checkpoint='checkpoint', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
last_epoch_lr_set = -1
from math import cos, pi
def adjust_learning_rate(optimizer, epoch, iteration, num_iter, monitor=None):
global last_epoch_lr_set
lr = optimizer.param_groups[0]['lr']
warmup_epoch = 5 if args.warmup else 0
warmup_iter = warmup_epoch * num_iter
current_iter = iteration + epoch * num_iter
max_iter = args.epochs * num_iter
if args.lr_decay == 'step':
lr = args.lr * (args.gamma ** ((current_iter - warmup_iter) / (max_iter - warmup_iter)))
elif args.lr_decay == 'cos':
lr = args.lr * (1 + cos(pi * (current_iter - warmup_iter) / (max_iter - warmup_iter))) / 2
elif args.lr_decay == 'linear':
lr = args.lr * (1 - (current_iter - warmup_iter) / (max_iter - warmup_iter))
elif args.lr_decay == 'schedule':
count = sum([1 for s in args.schedule if s <= epoch])
lr = args.lr * pow(args.gamma, count)
elif args.lr_decay == 'fixedStep': # every n (scheduled) epoch, decay
s = args.step # one element only
count = round(epoch / s)
lr = args.lr * pow(args.gamma, count)
elif args.lr_decay == 'fixedStep2': # every n (scheduled) epoch, decay
s = args.step
if last_epoch_lr_set < epoch:
last_epoch_lr_set = epoch
if epoch == 0: # skip the first epoch and don't decay
lr = args.lr
elif (epoch % s) == 0: #5%3==2: 0,1,2,(3),4,5,(6) ...
lr = lr * args.gamma
elif args.lr_decay == 'plateau':
if last_epoch_lr_set < epoch:
last_epoch_lr_set = epoch
# reduce_plat.on_epoch_end(epoch, monitor)
elif args.lr_decay == 'specified':
if last_epoch_lr_set < epoch:
last_epoch_lr_set = epoch
lr = lr_schedul.get_lr(epoch)
print('read ' , lr, ' for epoch ', epoch)
else:
raise ValueError('Unknown lr mode {}'.format(args.lr_decay))
if epoch < warmup_epoch:
lr = args.lr * current_iter / warmup_iter
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()