-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
984 lines (873 loc) · 49.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
import heapq
import matplotlib.pyplot as plt
import cv2
import numpy as np
import random
from tkinter import *
import ttkbootstrap as ttk
from PIL import Image, ImageTk
import math
from tkinter import messagebox
import utils as ut
# Blue rectangle shows the runway strip.
# The blue filled rectangle above the runway shows the parking/dispersal area.
# On clicking on the runway, the unfilled red circle represents the CEP around the aimpoint.
# The filled circle represents the strikepoint calculated based on the Gaussian probability density function.
# The unfilled green circle represents the submunition dispersal radius around the strikepoint.
# The green dots inside this circle represent the submunition strikepoints.
# The red dotted lines represent the MOS strips on the runway.
# For Parking Area
# The aforementioned conditions apply for the parking area as well with the parking area dimensions.
# After clicking inside the parking area, the highlighted green circle show the area overlapping between the parking area and the area destroyed by the missile.
def mainloop():
global scale_length,scale_width,parking_scale_length,parking_scale_width,image,message,cep_values
global up_down_point,rect_point,missile,max_point,length_cut,width_cut,parking_gui_input,runway_gui_input,parking_missile
global parking_area_accumulate
scale_length = 1 / 10 # e.g., 1 pixel = 10 feet for length
scale_width = 1 / 2 # e.g., 1 pixel = 2 feet for width
parking_scale_length = 1 / 10 # e.g., 1 pixel = 10 feet for length
parking_scale_width = 0.15 # e.g., 1 pixel = 6 feet for width
image = np.zeros((1220, 500, 3), dtype=np.uint8)
message='\n --------------------------------------------\n'
cep_values = [] # Contains the CEP values used to make the graph
up_down_point=[] # Used in graph
rect_point=[] # Contains topleft and bottom most point of rectangale
missile=[]
max_point=[]
valid_aim_point=[]
length_cut=False
width_cut=False
parking_gui_input=False
runway_gui_input=False
parking_missile=0
parking_area_accumulate=np.zeros((1220, 500, 3), dtype=np.uint8)
def feet_to_pixels_length(feet, scale_length):
return int(feet * scale_length)
def feet_to_pixels_width(feet, scale_width):
return int(feet * scale_width)
def runway_draw(length_ft,width_ft): # draw runway (rectangle) for a given length and breadth
global image,parking_area_accumulate,top_left_corner,bottom_right_corner
length_px = feet_to_pixels_length(length_ft, scale_length)
width_px = feet_to_pixels_width(width_ft, scale_width)
image_height = width_px + 235 # Add some padding for width
image_width = length_px + 20 # Add some padding for length
image = np.zeros((image_height+100, image_width+100, 3), dtype=np.uint8)
parking_area_accumulate=cv2.Canny(image,20,100)
top_left_corner = (50, 250) # Adding 10-pixel padding
rect_point.append(list(top_left_corner))
bottom_right_corner = (top_left_corner[0] + length_px, top_left_corner[1] + width_px)
rect_point.append(list(bottom_right_corner))
if runway_gui_input:
cv2.rectangle(image, top_left_corner, bottom_right_corner, (255, 0, 0), 2)
# cv2.imshow("image", image)
show_opencv_image(image,image.shape[1],image.shape[0])
return rect_point
def parking_rectangle(length,breadth): # draw parking (rectangle) for a given length and breadth
global image
parking_rectangle_points=[]
length_px = feet_to_pixels_length(length, parking_scale_length)
width_px = feet_to_pixels_width(breadth, parking_scale_width)
global parking_area
parking_area = length_px*width_px
padding=200
parking_cross_cen=(0,0)
parking_top_corner=(rect_point[0][0]+padding,rect_point[0][1]-width_px)
parking_right_corner=(rect_point[0][0]+length_px+padding,rect_point[0][1])
parking_rectangle_points.append(parking_top_corner)
parking_rectangle_points.append(parking_right_corner)
if parking_gui_input:
cv2.rectangle(image,parking_top_corner,parking_right_corner,(100,0,0),-1)
parking_cross_cen=(int((parking_top_corner[0]+parking_right_corner[0])/2),int((parking_top_corner[1]+parking_right_corner[1])/2))
cv2.line(image, (parking_cross_cen[0] - 10, parking_cross_cen[1]), (parking_cross_cen[0] + 10, parking_cross_cen[1]), (0,0,255), 2)
cv2.line(image, (parking_cross_cen[0], parking_cross_cen[1] - 10), (parking_cross_cen[0], parking_cross_cen[1] + 10), (0,0,255), 2)
# cv2.imshow("image", image)
show_opencv_image(image,image.shape[1],image.shape[0])
return parking_rectangle_points,parking_cross_cen
def drawline(img,pt1,pt2,color,thickness=1,style='dotted',gap=20): # To draw dotted line denoting MOS strips
dist =((pt1[0]-pt2[0])**2+(pt1[1]-pt2[1])**2)**.5
pts= []
for i in np.arange(0,dist,gap):
r=i/dist
x=int((pt1[0]*(1-r)+pt2[0]*r)+.5)
y=int((pt1[1]*(1-r)+pt2[1]*r)+.5)
p = (x,y)
pts.append(p)
if style=='dotted':
for p in pts:
cv2.circle(img,p,thickness,color,-1)
else:
s=pts[0]
e=pts[0]
i=0
for p in pts:
s=e
e=p
if i%2==1:
cv2.line(img,s,e,color,thickness)
i+=1
def generate_strike_ideal_point_new(rect_point,mos,subdisp): #To genrate first strike point widthwise
width = rect_point[1][1]-rect_point[0][1]
length = rect_point[1][0]-rect_point[0][0]
cross_cen=[]
cross_cen_x=[]
cross_cen_y=[]
lmos=mos[0]
wmos=mos[1]
total_strip_x=length//lmos
total_strip_y=width//wmos
total_strike_point=width//(subdisp*2)
if runway_gui_input:
drawline(image, (rect_point[0][0] +lmos,rect_point[0][1]), (rect_point[0][0] +lmos,rect_point[1][1]), (0, 0, 255), thickness=2, style='dotted', gap=20)
for yi in range(1,total_strip_y+1,1):
drawline(image, (rect_point[0][0],rect_point[0][1]+yi*wmos), (rect_point[1][0],rect_point[0][1]+yi*wmos), (0, 0, 255), thickness=2, style='dotted', gap=20 )
for xi in range(1,total_strip_x+1,1):
x1=int(rect_point[0][0]+xi*lmos-lmos/3)
cross_cen_x.append((x1))
for yi in range(1,total_strike_point+1,1):
y1=int(rect_point[0][1]+yi*2*subdisp-(2*subdisp)/3)
cross_cen_y.append((y1))
for i in range(len(cross_cen_x)):
for j in range(len(cross_cen_y)):
cross_cen.append([cross_cen_x[i],cross_cen_y[j]])
no_attack_point=int(len(cross_cen)/2)
for i in range (no_attack_point):
cv2.line(image, (cross_cen[i][0] - 10, cross_cen[i][1]), (cross_cen[i][0] + 10, cross_cen[i][1]), (0,0,255), 2)
cv2.line(image, (cross_cen[i][0], cross_cen[i][1] - 10), (cross_cen[i][0], cross_cen[i][1] + 10), (0,0,255), 2)
# cv2.imshow('image',image)
show_opencv_image(image,image.shape[1],image.shape[0])
return (total_strip_y,total_strike_point,cross_cen)
def max_min_y(points): #returns maximum and minimum values in array
max=-10000000
min=100000000
for i in points:
if (i[1]>max):
max=i[1]
if (i[1]<min):
min=i[1]
maxmin_y=(max,min)
return maxmin_y
def max_x(points): #returns maximum and minimum values in array
max=-10000000
for i in points:
if (rect_point[0][1]<i[1] < rect_point[1][1] and i[0]>max):
max=i[0]
return max
def generate_strike_ideal_point_new_1(rect_point,mos,subdisp): #This is after the first click to generate next attack point
global length_cut
length = rect_point[1][0]-rect_point[0][0]
width = rect_point[1][1]-rect_point[0][1]
cross_cen=[]
cross_cen_x=[]
cross_cen_y=[]
lmos=mos[0]
wmos=mos[1]
total_strip_y=width//wmos
total_strike_point=width//(subdisp*2)
# print(f"rect_point0+lmos{rect_point[0][0] +lmos} while rect_point[1][0] {rect_point[1][0]}")
if rect_point[0][0] +lmos<=rect_point[1][0]:
if runway_gui_input:
for xi in range(1,1+1,1):
drawline(image, (rect_point[0][0] +xi*lmos,rect_point[0][1]), (rect_point[0][0] +xi*lmos,rect_point[1][1]), (255, 0, 0), thickness=2, style='Filled', gap=5)
drawline(image, (rect_point[0][0],rect_point[0][1]), (rect_point[0][0],rect_point[1][1]), (255,0, 0), thickness=2, style='filled', gap=2)
for xi in range(1,1 +1,1):
x1=int(rect_point[0][0]+xi*lmos-lmos/3)
cross_cen_x.append((x1))
for yi in range(1,total_strike_point+1,1):
y1=int(rect_point[0][1]+yi*2*subdisp-(2*subdisp)/3)
cross_cen_y.append((y1))
for i in range(len(cross_cen_x)):
for j in range(len(cross_cen_y)):
cross_cen.append([cross_cen_x[i],cross_cen_y[j]])
for i in range (len(cross_cen)):
cv2.line(image, (cross_cen[i][0] - 10, cross_cen[i][1]), (cross_cen[i][0] + 10, cross_cen[i][1]), (0,0,255), 2)
cv2.line(image, (cross_cen[i][0], cross_cen[i][1] - 10), (cross_cen[i][0], cross_cen[i][1] + 10), (0,0,255), 2)
temp_message="length remaining " + str(length/scale_length) +"\n"
output_text.insert("end", temp_message )
output_text.see("end")
else:
temp_message="length remaining " + str(length/scale_length)
output_text.insert("end", temp_message )
output_text.insert("end", " \n\t\t LENGTHWISE CUT SUCCESSFUL!\n ")
output_text.see("end")
length_cut=True
# cv2.imshow('image',image)
show_opencv_image(image,image.shape[1],image.shape[0])
return (total_strip_y,total_strike_point,cross_cen)
def generate_submunition_points(center, subdisp,submun): #generating submunition's strike points (green filled circle)
global message
points = []
y=np.random.normal(85,5)
total_successful_submunition=round(y/100*submun)
r = np.random.uniform(0,subdisp,total_successful_submunition)
theta = np.random.uniform(0,2*(np.pi),total_successful_submunition)
for i in range(total_successful_submunition):
points.append((int(center[0]+r[i]*np.cos(theta[i])),int(center[1]+r[i]*np.sin(theta[i]))))
message=str(total_successful_submunition)+" out of "+ str(submun)+ " submunitions have successfully hit \n "+str(submun-total_successful_submunition)+" have failed"
return points,total_successful_submunition
def generate_strike_point(aim_point, cep): # To generate strike point of missile
list_y=[]
list_x=[]
x, y = aim_point
dx,dy = np.random.normal(0, cep,2)
list_x.append(dx)
list_y.append(dy)
strike_point = (x + dx, y + dy)
return strike_point
def diff(arr): # To calculate length of strips remaining
diff=[]
b = rect_point[1][1]
arr.append((b,b))
arr.sort()
for i in range(1,len(arr),1):
diff1=arr[i][0]-arr[i-1][1]
if(diff1<=0):
diff.append(0)
else:
diff.append(diff1)
text6="Lengths of the strips remaining: "+str(diff)+"\n"
output_text.insert("end",text6)
return diff
def on_mouse_click(event): # functions for when user clicks
if event :
x=event.x
y=event.y
global parking_area_accumulate
global new_cross_cen
valid= (parking_rectangle_points[0][0]<x<parking_rectangle_points[1][0] and parking_rectangle_points[0][1]<y<parking_rectangle_points[1][1] and parking_gui_input ) or (runway_gui_input and rect_point[0][0]<x<rect_point[1][0] and rect_point[0][1]<y<rect_point[1][1])
runway_aim_point=False
for i in range(len(valid_aim_point)):
if (valid_aim_point[i][1]-10<y<valid_aim_point[i][1]+10 )and (valid_aim_point[i][0]-10<x<valid_aim_point[i][0]+10):
runway_aim_point=True
if valid :
global parking_cross_cen
print(parking_cross_cen)
parking_aim_point=False
if parking_cross_cen[0]!=0:
parking_aim_point=(parking_cross_cen[0]-10<x<parking_cross_cen[0]+10) and (parking_cross_cen[1]-10<y<parking_cross_cen[1]+10)
print("parking aim_point",parking_aim_point)
if runway_aim_point or parking_aim_point:
if random.random()<0.85:
global cep
global subdisp,parking_missile
points = []
temp_message=''
parking_rectangle_points
if parking_rectangle_points[0][0]<x<parking_rectangle_points[1][0] and parking_rectangle_points[0][1]<y<parking_rectangle_points[1][1] and parking_gui_input and parking_aim_point:
print("inside parking point")
parking_missile+=1
cv2.circle(image,(x,y),parking_cep,(0,0,255),1)
strike_point=generate_strike_point((x,y),.6*parking_cep)
strike_point=np.round(strike_point).astype(int)
image2=image.copy()
gray = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 40, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
rect_x, rect_y, rect_w, rect_h = parking_rectangle_points[0][0],parking_rectangle_points[0][1],parking_rectangle_points[1][0],parking_rectangle_points[1][1]
cv2.rectangle(image2, (rect_x, rect_y), (rect_w, rect_h), (0, 0,255), 2)
center = (int(strike_point[0]),int(strike_point[1]))
radius = parking_subdisp
cv2.circle(image, center, radius, (0, 0, 255), 2)
rect_mask = np.zeros_like(gray)
cv2.rectangle(rect_mask, (rect_x, rect_y), ( rect_w, rect_h), (255,0,255), -1)
circle_mask = np.zeros_like(gray)
cv2.circle(circle_mask, center, radius, 255, -1)
intersection = cv2.bitwise_and(rect_mask, circle_mask)
parking_area_accumulate=cv2.bitwise_or(intersection,parking_area_accumulate)
intersection_contours, _ = cv2.findContours(parking_area_accumulate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# print(f"parking area shape{parking_area_accumulate.shape} and intersection area shape {intersection.shape}")
# cv2.imshow("parking intersection:",intersection)
# cv2.imshow("parking intersection:",parking_area_accumulate)
for contour in intersection_contours:
cv2.drawContours(image, [contour], -1, (0,255,0), 2)
intersection_area = sum(cv2.contourArea(contour) for contour in intersection_contours)
percent_area=round((intersection_area/parking_area)*100,2)
text9="Percentage of parking area destroyed is: "+str(percent_area)+"%"+"\n"
output_text.insert("end",text9)
cv2.circle(image, strike_point, 10, (0, 0, 255), -1) #strike point
cv2.circle(image, strike_point, parking_subdisp, (0, 255, 0), 1)
points,total_successful_submunition = generate_submunition_points(strike_point, parking_subdisp,parking_submun)
print("\n",total_successful_submunition,"out of ",parking_submun,"submunitions have successfully hit and ",parking_submun-total_successful_submunition," have failed ")
text5=str(total_successful_submunition)+" out of "+str(parking_submun)+" submunitions have successfully hit and "+str(parking_submun-total_successful_submunition)+" have failed "+"\n"
output_text.insert("end",text5)
sub_count_label.config(text="Submunition:"+str(total_successful_submunition))
for point in points:
cv2.circle(image, point, int(feet_to_pixels_width(parking_submun_damage_radius,scale_width)), (0, 255, 0), thickness=-1)
missile_count_label.config(text="Missiles:"+str(parking_missile))
if(percent_area>70):
color="green"
output_text.insert("end", "\n\t\t PARKING DESTROY SUCCESSFULLY !\n--------------------------------------------------------------------------\n ")
output_text.see("end")
else:
color="red"
canvas1.create_oval(5, 5, 50, 50, fill= color)
show_opencv_image(image,image.shape[1],image.shape[0])
# cv2.imshow('image',image)
elif(runway_gui_input and rect_point[0][0]<x<rect_point[1][0] and rect_point[0][1]<y<rect_point[1][1] and runway_aim_point):
b=rect_point[1][1]
missile.append(1)
cv2.circle(image, (x, y), cep, (0, 0, 255), 1)
strike_point=generate_strike_point((x,y),.6*cep)
strike_point=np.round(strike_point).astype(int)
cv2.circle(image, strike_point, 10, (0, 0, 255), -1) #strike point
cv2.circle(image, strike_point, subdisp, (0, 255, 0), 1)
points,total_successful_submunition = generate_submunition_points(strike_point, subdisp,submun)
# print("\n",total_successful_submunition,"out of",submun,"submunitions have successfully hit and",submun-total_successful_submunition,"have failed ")
sub_count_label.config(text="Submunition:"+str(total_successful_submunition))
for point in points:
cv2.circle(image, point, int(feet_to_pixels_width(damage,scale_width)), (0, 255, 0), thickness=-1)
d1,u1=max_min_y(points)
max=max_x(points)
max_point.append(max)
if len(max_point)==1:
max=max_point[0]
else:
if(max_point[0]>max_point[1]):
max=max_point[0]
max_point.remove(max_point[1])
else:
max=max_point[1]
max_point.remove(max_point[0])
if u1 < a and d1< a:
up_down_point.append((a,a))
elif u1 < a:
up_down_point.append((a,d1))
elif d1 > b and u1 >b:
up_down_point.append((b,b))
elif d1 > b:
up_down_point.append((u1,b))
else:
up_down_point.append((u1,d1))
diff_bw_max_min_y=diff(up_down_point)
up_down_point.pop()
count=0
for i in range(len(diff_bw_max_min_y)):
if diff_bw_max_min_y[i]>mos[1]:
strip_Remaining =math.ceil(diff_bw_max_min_y[i]/mos[1])-1
count+=1
if count>0:
temp_message="\nNo of MOS strips remaining: "+str(strip_Remaining)
if count==0:
temp_message=temp_message+"\n\t\tWIDTHWISE CUT SUCCESSFUL! \n"+str(len(missile))+" missiles were required to cut the runway"
rect_point[0][0]=max
up_down_point.clear()
corner = rect_point[0][1]
up_down_point.append((0,corner))
total_strip_y,total_strike_point,new_cross_cen=generate_strike_ideal_point_new_1(rect_point,mos,subdisp)
print("new_cross_cen",new_cross_cen)
if len(new_cross_cen) :
valid_aim_point.clear()
for i in range (len(new_cross_cen)):
valid_aim_point.append(new_cross_cen[i])
global width_cut
width_cut=True
if(width_cut and length_cut):
color="green"
else:
color="red"
canvas1.create_oval(5, 5, 50, 50, fill= color)
message1=message+temp_message+"\n--------------------------------------------------------------------\n"
output_text.insert("end", message1)
output_text.see("end")
hori_cut.config(text='Hori Cut')
vert_cut.config(text='Vert Cut')
if length_cut:
canvas2.create_rectangle(0,3,52,17,fill='green')
else:
canvas2.create_rectangle(0,3,52,17,fill='red')
if width_cut:
canvas3.create_rectangle(0,3,52,17,fill='green')
else:
canvas3.create_rectangle(0,3,52,17,fill='red')
missile_count_label.config(text="Missiles:"+str(len(missile)))
# new_image=cv2.imshow('image',image)
show_opencv_image(image,image.shape[1],image.shape[0])
else:
cv2.putText(image, "ERROR!", (int(image.shape[1]//2)-100,int(image.shape[0]//2)), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 0, 255), 2, cv2.LINE_AA)
# cv2.imshow('image',image)
show_opencv_image(image,image.shape[1],image.shape[0])
else:
missile.append(1)
output_text.insert("end","\nMissile has failed\n--------------------------------------------------------------------\n")
output_text.see("end")
def prepare_list_of_upper_down_points(cut_list_up_down_point_copy,a,b,x,y,cep): # (ONLY FOR GRAPH) To prepare list of up and down points of submunition
strike_point = generate_strike_point((x, y), cep)
strike_point = np.round(strike_point).astype(int)
points,_ = generate_submunition_points(strike_point, subdisp, submun)
d1, u1 = max_min_y(points)
if u1 < a and d1< a:
heapq.heappush(cut_list_up_down_point_copy, (a, a))
elif u1 < a:
heapq.heappush(cut_list_up_down_point_copy, (a, d1))
elif d1 > b and u1 >b:
heapq.heappush(cut_list_up_down_point_copy, (b, b))
elif d1 > b:
heapq.heappush(cut_list_up_down_point_copy, (u1, b))
else:
heapq.heappush(cut_list_up_down_point_copy, (u1, d1))
def prepare_diff_of_up_down_coordinate(cut_list_up_down_point): # (ONLY FOR GRAPH) To prepare difference of up and down points of submunition
cut_list_up_down_point_sorted=[]
diff_of_points=[]
up_down_coordinate=heapq.heappop(cut_list_up_down_point)
cut_list_up_down_point_sorted.append(up_down_coordinate)
a1=up_down_coordinate[1]
for i in range (len(cut_list_up_down_point)):
up_down_coordinate1=heapq.heappop(cut_list_up_down_point)
cut_list_up_down_point_sorted.append(up_down_coordinate1)
diff=up_down_coordinate1[0]-a1
a1=up_down_coordinate1[1]
if diff < mos[1]:
diff_of_points.append(0)
else:
diff_of_points.append(diff)
return (diff_of_points,cut_list_up_down_point_sorted)
def cut_width(rect_top, rect_bottom,cross_cen , total_strike_point,cep): # (ONLY FOR GRAPH) returns total no of missile required to cut particular CEP of runway along width
cut_list_up_down_point = []
diff_of_points = []
a = rect_top[1]
b = rect_bottom[1]
cir_cor_new=[]
cut_list_up_down_point_sorted1=[]
no_of_missile=0
cut_list_up_down_point.append((0, a))
for i in range(total_strike_point):
x, y = cross_cen[i]
no_of_missile+=1
prepare_list_of_upper_down_points(cut_list_up_down_point,a,b,x,y,cep)
heapq.heappush(cut_list_up_down_point, (b, b))
cut_list_up_down_point_copy=cut_list_up_down_point.copy()
diff_of_points,_=prepare_diff_of_up_down_coordinate(cut_list_up_down_point)
for i in range(len(diff_of_points)):
if diff_of_points[i]:
cir_cor_new.append(cross_cen[diff_of_points.index(diff_of_points[i])])
while cir_cor_new:
diff_of_points1=[]
for i in range(len(cir_cor_new)):
x,y=cir_cor_new.pop()
no_of_missile+=1
prepare_list_of_upper_down_points(cut_list_up_down_point_copy,a,b,x,y,cep)
cut_list_up_down_point_copy2=cut_list_up_down_point_copy.copy()
up_down_coordinate=heapq.heappop(cut_list_up_down_point_copy2)
cut_list_up_down_point_sorted1.append(up_down_coordinate)
a1=up_down_coordinate[1]
for i in range (len(cut_list_up_down_point_copy2)):
up_down_coordinate1=heapq.heappop(cut_list_up_down_point_copy2)
cut_list_up_down_point_sorted1.append(up_down_coordinate1)
diff=up_down_coordinate1[0]-a1
a1=up_down_coordinate1[1]
if diff < mos[1]:
diff_of_points1.append(0)
else:
diff_of_points1.append(diff)
cir_cor_new.append((x,y))
return no_of_missile
def no_of_missile(cep): # (ONLY FOR GRAPH) To calculate no of missile required to cut runway along width
total_no_of_missile=0
total_no_of_missile+=cut_width(rect_point[0],rect_point[1],cross_cen,total_strike_point,cep)
return total_no_of_missile
def graph(): # (ONLY FOR GRAPH) To plot graph
try:
colors = ['c', 'r', 'm', 'g', 'y']
markers = ['D', 'x', 'o', '^', 's']
missile_iteration = value4
missile_each_graph = value5
total_steps = int(len(cep_values)) * int(missile_iteration) * int(missile_each_graph) # Total number of steps in the task
# Create a new window for the progress bar
progress_window = LabelFrame(opencv_frame,text="loading")
progress_window.grid(row=1,pady=10)
# Label for the progress bar
progress_label = Label(progress_window, text="Calculating, please wait...")
progress_label.grid(row=1,pady=10)
# Create the progress bar
progress_bar = ttk.Progressbar(progress_window, orient="horizontal", length=runway_draw_length*0.111, mode="determinate")
progress_bar.grid(row=2,pady=10)
progress_bar['maximum'] = total_steps
# Label to show the percentage
percentage_label = Label(progress_window, text="0%")
percentage_label.grid(row=3,pady=10)
# Initialize the step counter
step_counter = 0
# Perform the long-running task
for idx, cep in enumerate(cep_values):
result_x = []
result_y = []
cep1 = int(cep * 3.28)
prev = 0
for missile in range(1, int(missile_iteration) + 1, 1):
sum1 = 0
for i in range(int(missile_each_graph)):
no_missile = no_of_missile(cep1)
if missile >= no_missile:
sum1 += 1
if sum1 > prev:
prev = sum1
# Update the progress bar and percentage label
step_counter += 1
progress_bar['value'] = step_counter
percentage_label.config(text=f"{step_counter * 100 // total_steps}%")
root.update_idletasks()
print('no of cut for missile', missile, '=', prev)
result_x.append(missile)
result_y.append(prev / int(missile_each_graph) * 100)
if(step_counter * 100 // total_steps)>=100:
progress_window.grid_remove()
plt.scatter(result_x, result_y, color=colors[cep_values.index(cep)], marker=markers[cep_values.index(cep)], s=30, label=f'CEP={cep1}')
plt.plot(result_x, result_y, color=colors[cep_values.index(cep)]) # Line plot without label
plt.xlabel("Number of Missiles")
plt.ylabel("Probability of Single Runway Cut (%)")
plt.legend(loc='lower right')
plt.xticks(np.arange(0, int(value4) + 1, 1))
plt.show()
except Exception as e:
messagebox.showerror("Error", f"An error occurred: {str(e)}")
print(e)
def graph_display(): # (ONLY FOR GRAPH) GUI component of graph
def get_values():
global value4
global value5
value1 = graph_entry1.get().strip() # Remove leading/trailing spaces
value2 = graph_entry2.get().strip()
value3 = graph_entry3.get().strip()
value4 = graph_entry4.get().strip()
value5 = graph_entry5.get().strip()
value6 = graph_entry6.get().strip()
value7 = graph_entry7.get().strip()
if value1 and value2 and value3 and value6 and value7:
cep_values.append(int(value1))
cep_values.append(int(value2))
cep_values.append(int(value3))
cep_values.append(int(value6))
cep_values.append(int(value7))
graph()
else:
text8="Please enter values in all fields."
output_text.insert("end",text8)
graph_label=Label(missile_output,text="5 CEP values(m)",font='Callibri 10 bold')
graph_label.grid(row=0,column=0,padx=10,pady=10)
graph_label1=Label(missile_output,text="cep 1 (meter)")
graph_label1.grid(row=1,column=0,padx=10,pady=10)
graph_entry1=Entry(missile_output)
graph_entry1.insert(0,5)
graph_entry1.grid(row=1,column=1)
graph_label2=Label(missile_output,text="cep 2 (meter)")
graph_label2.grid(row=3,column=0,padx=10,pady=10)
graph_entry2=Entry(missile_output)
graph_entry2.insert(0,25)
graph_entry2.grid(row=3,column=1)
graph_label3=Label(missile_output,text="cep 3 (meter)")
graph_label3.grid(row=5,column=0,padx=10,pady=10)
graph_entry3=Entry(missile_output)
graph_entry3.insert(0,40)
graph_entry3.grid(row=5,column=1)
graph_label6=Label(missile_output,text="cep 4 (meter)")
graph_label6.grid(row=7,column=0,padx=10,pady=10)
graph_entry6=Entry(missile_output)
graph_entry6.insert(0,200)
graph_entry6.grid(row=7,column=1)
graph_label7=Label(missile_output,text="cep 5 (meter)")
graph_label7.grid(row=9,column=0,padx=10,pady=10)
graph_entry7=Entry(missile_output)
graph_entry7.insert(0,300)
graph_entry7.grid(row=9,column=1)
graph_label4=Label(missile_output,text="No of missiles")
graph_label4.grid(row=11,column=0,padx=10,pady=10)
graph_entry4=Entry(missile_output)
graph_entry4.insert(0,10)
graph_entry4.grid(row=11,column=1)
graph_label5=Label(missile_output,text="Noi per simulation")
graph_label5.grid(row=13,column=0,padx=10,pady=10)
graph_entry5=Entry(missile_output)
graph_entry5.insert(0,500)
graph_entry5.grid(row=13,column=1)
button=Button(missile_output,text="Simulate Graph",command=get_values,font='Callibri 10 bold')
button.grid(row=15,column=0,padx=10,pady=5,sticky="news")
def add_scrollbar(frame):
canvas = Canvas(frame)
v_scrollbar = Scrollbar(frame, orient="vertical", command=canvas.yview)
canvas.configure(yscrollcommand=v_scrollbar.set)
v_scrollbar.grid(row=0, column=1, sticky="ns")
h_scrollbar = Scrollbar(frame, orient="horizontal", command=canvas.xview)
canvas.configure(xscrollcommand=h_scrollbar.set)
h_scrollbar.grid(row=1, column=0, sticky="ew")
canvas.grid(row=0, column=0, sticky="nsew")
scrollable_frame = ttk.Frame(canvas)
canvas.create_window((0, 0), window=scrollable_frame, anchor="nw")
scrollable_frame.bind("<Configure>", lambda e: canvas.configure(scrollregion=canvas.bbox("all")))
canvas.bind_all("<MouseWheel>", lambda event: canvas.yview_scroll(int(-1*(event.delta/120)), "units"))
canvas.bind_all("<Shift-MouseWheel>", lambda event: canvas.xview_scroll(int(-1*(event.delta/120)), "units"))
return canvas, scrollable_frame
def show_opencv_image(image,width,height):
if runway_gui_input:
missile_frame1.grid_forget()
if parking_gui_input:
missile_frame2.grid_forget()
missile_output.grid_forget()
button_graph.grid_forget()
# now , going to change the orientation of visible output from horizontal to vertical
for widget in visible_output.winfo_children():
widget.grid_forget()
supporting_text.config(width=20)
canvas1.grid(row=0,column=1)
cut_label.grid(row=1,column=1)
label.grid(row=2,column=1,padx=30)
missile_count_label.grid(row=3,column=1)
sub_label.grid(row=4,column=1)
sub_count_label.grid(row=5,column=1)
canvas2.grid(row=7,column=1)
hori_cut.grid(row=6,column=1)
canvas3.grid(row=9,column=1)
vert_cut.grid(row=8,column=1)
output_text.grid(row=2, column=1, sticky="nsew")
image = image
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
cropped_image = image[top_left_corner[1]:bottom_right_corner[1], :]
image=cv2.resize(image,(width,height))
img_display = image.copy()
# Convert the image to PIL format
pil_image = Image.fromarray(image)
tk_image = ImageTk.PhotoImage(image=pil_image)
# Display the image in the Tkinter window
img_label.config(image=tk_image)
img_label.image = tk_image
root = Tk()
root.title("Visualization")
# root.geometry("900x300")
frame = ttk.Frame(root)
opencv_framm=ttk.Frame(root)
root.state('zoomed')
# root.columnconfigure(0, weight=1)
frame.grid(row=0, column=0, sticky="nsew")
opencv_framm.grid(row=0,column=1,sticky="nsew")
canvas,content_frame = add_scrollbar(frame)
content_frame.grid_rowconfigure(0, weight=1)
content_frame.grid_columnconfigure(0, weight=1)
#info for runway,parking area,output window,current status,graph
missile_frame1=LabelFrame(content_frame,text="Missile Information")
missile_frame1.grid(row=0,padx=20,pady=10,sticky="ewns")
missile_frame1.columnconfigure(0, weight=1)
missile_frame2=LabelFrame(content_frame,text="Missile Information [For Parking Area]")
missile_frame2.grid(row=3,padx=20,pady=10,sticky="ewns")
missile_output=LabelFrame(content_frame,text="Output")
missile_output.grid(row=8,column=0,padx=20,pady=5,sticky="news")
visible_output=LabelFrame(content_frame,text="Current status")
visible_output.grid(row=7,column=0,padx=20,pady=4,sticky="news")
# second frame in same widnow
opencv_frame=LabelFrame(opencv_framm,text="palyground")
opencv_frame.grid(row=0,column=1,pady=10,padx=10,sticky="ew")
output_text_frame=LabelFrame(opencv_frame,text="output text")
output_text_frame.grid(row=2, column=0, sticky="nsew")
root.columnconfigure(0, weight=1)
root.rowconfigure(0, weight=1)
frame.columnconfigure(0, weight=1)
frame.rowconfigure(0, weight=1)
# opencv window
img_label = Label(opencv_frame)
img_label.grid(row=0, column=0, sticky="nsew")
img_label.bind("<Button-1>", on_mouse_click)
# show_opencv_image()
#cut status GUI
canvas1 = Canvas(visible_output, width=50, height=50)
canvas1.grid(row=0,column=0)
canvas1.create_oval(5, 5, 50, 50, fill= 'red')
cut_label=Label(visible_output,text="status")
cut_label.grid(row=1,column=0)
missile_image=Image.open("missile.png")
k_image=missile_image.resize((50,50),Image.BICUBIC)
tk_image=ImageTk.PhotoImage(k_image)
label=Label(visible_output,image=tk_image)
label.grid(row=0,column=3,padx=30)
missile_count_label=Label(visible_output,text="Missiles:"+str(0))
missile_count_label.grid(row=1,column=3)
submunition_image=Image.open("submunition.png")
resize_submunition=submunition_image.resize((50,50),Image.BICUBIC)
sub_image=ImageTk.PhotoImage(resize_submunition)
sub_label=Label(visible_output,image=sub_image)
sub_label.grid(row=0,column=4,padx=30)
sub_count_label=Label(visible_output,text="Submunitions:"+str(0))
sub_count_label.grid(row=1,column=4)
canvas2=Canvas(visible_output,width=40,height=40)
canvas2.grid(row=0,column=5)
hori_cut=Label(visible_output,text='')
hori_cut.grid(row=0,column=5)
canvas3=Canvas(visible_output,width=40,height=40)
canvas3.grid(row=1,column=5)
vert_cut=Label(visible_output,text='')
vert_cut.grid(row=1,column=5)
def runway_gui_info():
global cep_entry,munition_pattern_entry,no_munition_entry,cep_width_entry,damage_entry,runway_width_entry
global runway_gui_input
runway_gui_input=True
runway_button.destroy()
missile_frame2.destroy()
#Labels for runway Area
cep_label=Label(missile_frame1,text="Enter CEP (in meters)")
cep_label.grid(row=0,column=0)
cep_entry=Entry(missile_frame1)
cep_entry.insert(0,30)
cep_entry.grid(row=0,column=1)
munition_pattern_label=Label(missile_frame1,text="Enter the submunition dispersal pattern radius(in feet)")
munition_pattern_label.grid(row=0,column=2)
munition_pattern_entry=Entry(missile_frame1)
munition_pattern_entry.insert(0,150)
munition_pattern_entry.grid(row=0,column=3)
no_munition_label=Label(missile_frame1,text="Enter the no of submunitions")
no_munition_label.grid(row=1,column=0)
no_munition_entry=Entry(missile_frame1)
no_munition_entry.insert(0,85)
no_munition_entry.grid(row=1,column=1)
cep_width_label=Label(missile_frame1,text="Enter the MOS width (in feet)")
cep_width_label.grid(row=1,column=2)
cep_width_entry=Entry(missile_frame1)
cep_width_entry.insert(0,100)
cep_width_entry.grid(row=1,column=3)
damage_label=Label(missile_frame1,text="damage radius (in feet)")
damage_label.grid(row=2,column=0)
damage_entry=Entry(missile_frame1)
damage_entry.insert(0,10)
damage_entry.grid(row=2,column=1)
runway_width_label=Label(missile_frame1,text="Enter the runway width (in feet)")
runway_width_label.grid(row=2,column=2)
runway_width_entry=Entry(missile_frame1)
runway_width_entry.insert(0,300)
runway_width_entry.grid(row=2,column=3)
for widget in missile_frame1.winfo_children():
widget.grid_configure(padx=10,pady=10)
def display_parking_info():
global parking_cep_entry,parking_munition_pattern_entry,parking_no_munition_entry,parking_munition_radius_entry,parking_length_entry,parking_width_entry
global parking_gui_input
parking_button.destroy()
missile_frame1.destroy()
parking_gui_input=True
parking_cep_label=Label(missile_frame2,text="Enter CEP (in meters)")
parking_cep_label.grid(row=3,column=0)
parking_cep_entry=Entry(missile_frame2)
parking_cep_entry.insert(0,100)
parking_cep_entry.grid(row=3,column=1)
parking_munition_pattern_label=Label(missile_frame2,text="Enter the submunition dispersal pattern radius(in feet)")
parking_munition_pattern_label.grid(row=3,column=2)
parking_munition_pattern_entry=Entry(missile_frame2)
parking_munition_pattern_entry.insert(0,900)
parking_munition_pattern_entry.grid(row=3,column=3)
parking_no_munition_label=Label(missile_frame2,text="Enter the no of submunitions")
parking_no_munition_label.grid(row=4,column=0)
parking_no_munition_entry=Entry(missile_frame2)
parking_no_munition_entry.insert(0,820)
parking_no_munition_entry.grid(row=4,column=1)
parking_munition_radius_label=Label(missile_frame2,text="Enter the damage radius of each submunition(in feet)")
parking_munition_radius_label.grid(row=4,column=2)
parking_munition_radius_entry=Entry(missile_frame2)
parking_munition_radius_entry.insert(0,20)
parking_munition_radius_entry.grid(row=4,column=3)
parking_length_label=Label(missile_frame2,text="Enter the length of the parking area (in feet)")
parking_length_label.grid(row=5,column=0)
parking_length_entry=Entry(missile_frame2)
parking_length_entry.insert(0,2000)
parking_length_entry.grid(row=5,column=1)
parking_width_label=Label(missile_frame2,text="Enter the width of the parking area (in feet)")
parking_width_label.grid(row=5,column=2)
parking_width_entry=Entry(missile_frame2)
parking_width_entry.insert(0,1300)
parking_width_entry.grid(row=5,column=3)
for widget in missile_frame2.winfo_children():
widget.grid_configure(padx=10,pady=10)
def main_function():
global cep,subdisp,submun,mos,a,damage,parking_rectangle_points,parking_submun_damage_radius,parking_cep,new_cross_cen,parking_cross_cen
global parking_subdisp,parking_submun,total_strike_point,cross_cen,rect_point,missile,parking_missile,count,runway_draw_length
# cv2.namedWindow('image') #this window is important for creating window for display of opencv window but here no use due to inbuilt display of tkinter
missile=[]
new_cross_cen=[]
parking_missile=0
# acquiring values from GUI
if (runway_gui_input):
cep = int(cep_entry.get())
cep=int(feet_to_pixels_width(cep,scale_width))
subdisp = int(munition_pattern_entry.get())
subdisp=int(feet_to_pixels_width(subdisp,scale_width))
submun = int(no_munition_entry.get())
mos_width = int(cep_width_entry.get())
damage=int(damage_entry.get())
damage=feet_to_pixels_width(damage,scale_width)
runway_width=int(runway_width_entry.get())
else:
cep=30
cep=int(feet_to_pixels_width(cep,scale_width))
subdisp=105
subdisp=int(feet_to_pixels_width(subdisp,scale_width))
submun=85
mos_width=100
damage=10
damage=feet_to_pixels_width(damage,scale_width)
runway_width=300
if parking_gui_input:
parking_cep=int(parking_cep_entry.get())
parking_cep=int(feet_to_pixels_width(parking_cep,parking_scale_length))
parking_cep=int(parking_cep*3.28 )
parking_subdisp=int(parking_munition_pattern_entry.get())
parking_subdisp=feet_to_pixels_length(parking_subdisp,parking_scale_length)
parking_submun=int(parking_no_munition_entry.get())
parking_submun_damage_radius=int(parking_munition_radius_entry.get())
parking_submun_damage_radius=feet_to_pixels_length(parking_submun_damage_radius,parking_scale_length)
parking_area_length=int(parking_length_entry.get())
parking_area_width=int(parking_width_entry.get())
else:
parking_cep=100
parking_cep=int(feet_to_pixels_width(parking_cep,parking_scale_length))
parking_cep=int(parking_cep*3.28 )
parking_subdisp=900
parking_subdisp=feet_to_pixels_length(parking_subdisp,parking_scale_length)
parking_submun=820
parking_submun_damage_radius=20
parking_submun_damage_radius=feet_to_pixels_length(parking_submun_damage_radius,parking_scale_length)
parking_area_length=2000
parking_area_width=1300
#some modification (like rect_points, parking_point,mos define)
cep=int(cep*3.28 )
rect_point=[]
runway_draw_length=10500
rect_point=runway_draw(runway_draw_length,runway_width)
parking_rectangle_points,parking_cross_cen=parking_rectangle(parking_area_length,parking_area_width)
print("parking_cross_cen",parking_cross_cen)
a = rect_point[0][1]
up_down_point.append((0,a))
mos=[5000,mos_width] #MOS length 5000
mos[0]=feet_to_pixels_length(mos[0],scale_length)
mos[1]=feet_to_pixels_width(mos[1],scale_width)
if runway_gui_input:
_,total_strike_point,cross_cen=generate_strike_ideal_point_new(rect_point,mos,subdisp)
for i in cross_cen:
valid_aim_point.append(i)
# cv2.setMouseCallback('image', on_mouse_click)
#Button for graph,enter_Data,runway and parking
button=Button(missile_output,text="display graph",command=graph_display,font='Callibri 10 bold')
button.grid(row=0,column=1,padx=20,pady=5,sticky="news")
parking_button = Button(missile_frame2, text="PARKING", command=display_parking_info)
parking_button.grid(row=0, column=4, columnspan=7)
missile_frame2.grid_columnconfigure(4, weight=1)
canvas_, scrollable_frame = add_scrollbar(output_text_frame)
output_text = Text(scrollable_frame)
output_text.grid(row=1,column=0,columnspan=3, sticky="nsew")
output_text_frame.grid_columnconfigure(0, weight=1)
output_text.grid_columnconfigure(0, weight=1)
output_text.grid_rowconfigure(0, weight=1)
supporting_text=Label(missile_output,width=130)
supporting_text.grid(row=0,column=3)
# supporting_text.config(fg="white")
button_graph=Button(content_frame,text="Enter data",command=main_function,font='Callibri 10 bold')
button_graph.grid(row=6,column=0,sticky="news",padx=20,pady=5)
runway_button = Button(missile_frame1, text="RUNWAY", command=runway_gui_info)
# runway_button.grid(row=0,column=5,columnspan=6)
runway_button.grid(row=0, column=1,sticky="news",padx=20,pady=5)
missile_frame1.grid_columnconfigure(4, weight=1)
def do_refresh():
root.destroy()
cv2.destroyAllWindows()
if __name__ == '__main__':
mainloop()
menubar = Menu(root)
menubar.add_command(label="Refresh", command=do_refresh)
menubar.add_command(label="About", command=lambda:ut.show_about(root),)
root.config(menu=menubar)
root.mainloop()
# cv2.waitKey(0)
# cv2.destroyAllWindows()
if __name__ == '__main__':
mainloop()