-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
232 lines (188 loc) · 7.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import numpy as np
import random
import os
import torch.distributed as dist
import logging
from tensorboardX import SummaryWriter
import time
from apex import amp
import argparse
import pickle as pkl
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', required=True, type=str)
parser.add_argument('--name', default=None, type=str)
parser.add_argument('--local_rank', default=None, type=int)
parser.add_argument('--resume', default=None, type=str)
parser.add_argument('--weight_type', default='pretrain', type=str)
return parser.parse_args()
def initialize(cfg):
if cfg.local_rank is not None:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print("DDP! RANK %d WORLD_SIZE %d " % (rank, world_size))
torch.cuda.set_device(cfg.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
torch.distributed.barrier()
cfg.seed = rank + cfg.seed
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
random.seed(cfg.seed)
torch.backends.cudnn.benchmark = True
def build_logger(name = '',path=None, console=False, tensorboard_log=False):
logger = logging.getLogger()
logger.setLevel(level=logging.INFO)
logger.propagate = False
# create console handlers for master process
if console:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(
logging.Formatter(f'%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(console_handler)
# create file handlers
if path is not None:
assert path is not None
fn = 'log.txt' if not dist.is_initialized() else 'log_rank%d.txt' % dist.get_rank()
file_handler = logging.FileHandler(os.path.join(path, fn), 'w')
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(file_handler)
if tensorboard_log:
writer = SummaryWriter(os.path.join(path, 'tb'))
else:
writer = None
return logger, writer
def max_lr(optimizer):
return max([parma['lr'] for parma in optimizer.param_groups])
def load_resume(cfg, model, optimizer = None, scheduler = None,):
if cfg.path is None:
return 0,0
print('load resume from %s.' % cfg.path)
resume = torch.load(cfg.path, map_location='cpu')
state_dict = resume['model']
if cfg.pe_from_cls and 'reasoner.pe' not in state_dict and 'classifier.weight' in state_dict:
state_dict['reasoner.pe'] = state_dict['classifier.weight'].permute(1,0)
missing_keys, unexpected_keys = model.load_state_dict(state_dict,strict=False)
print('Missing Key: %s' % missing_keys)
print('Unexpected Key: %s' % unexpected_keys)
if cfg.type == 'continue':
if optimizer is not None:
optimizer.load_state_dict(resume['optimizer'])
if scheduler is not None:
scheduler.load_state_dict(resume['scheduler'])
amp.load_state_dict(resume['amp'])
return resume['epoch'], resume['best']
elif cfg.type == 'test':
return resume['epoch'], 0
elif cfg.type == 'pretrain':
return 0, 0
else:
raise NotImplementedError(cfg.type)
def save_resume(path, epoch, model, optimizer, scheduler,best):
print('Save resume into ==> %s' % path)
torch.save({
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'amp': amp.state_dict(),
'epoch': epoch,
'best' : best
}, path)
def calc_learnable_params(model):
total_params = 0
for p in model.parameters():
if p.requires_grad:
cur = 1
for a in p.shape:
cur *= a
total_params += cur
return total_params
def all_gather(tensor):
if isinstance(tensor[0],str):
if dist.get_rank() == 0:
for i in range(1,dist.get_world_size()):
fn = '/tmp/anticipation_tmp_res%d.pkl.tmp%s' % (i,os.environ['MASTER_PORT'])
with open(fn,'rb') as f:
x = pkl.load(f)
os.remove(fn)
tensor = np.concatenate([tensor, x],0)
return tensor
else:
fn = '/tmp/anticipation_tmp_res%d.pkl.tmp%s' % (dist.get_rank(),os.environ['MASTER_PORT'])
with open(fn,'wb') as f:
pkl.dump(tensor,f)
dist.barrier()
return None
if not isinstance(tensor, torch.Tensor):
tensor = torch.tensor(tensor)
orig_size = tensor.shape[0]
max_size = torch.tensor(orig_size).clone().int().cuda()
dist.all_reduce(max_size, op=dist.ReduceOp.MAX)
padding_tensor = torch.zeros(max_size, *tensor.shape[1:]).type_as(tensor)
padding_tensor[:orig_size] = tensor
mask = torch.zeros(max_size).float()
mask[:orig_size] = 1
mask_list = [torch.zeros_like(mask).float().cuda() for _ in range(dist.get_world_size())]
tensor_list = [torch.zeros_like(padding_tensor).type_as(tensor).cuda() for _ in range(dist.get_world_size())]
dist.all_gather(mask_list, mask.cuda())
dist.all_gather(tensor_list, padding_tensor.cuda())
out = []
for mask, tensor in zip(mask_list, tensor_list):
out.append(tensor[mask.bool()])
out = torch.cat(out, 0).cpu().data.numpy()
return out
class Timer(object):
"""A simple timer."""
def __init__(self):
self.start_time = 0.
self.clear()
def tic(self):
self.start_time = time.time()
def toc(self, average=True):
self.diff = time.time() - self.start_time
self.total_time += self.diff
self.calls += 1
self.average_time = self.total_time / self.calls
if average:
return self.average_time
else:
return self.diff
def clear(self):
self.total_time = 0.
self.calls = 0
self.diff = 0.
self.average_time = 0.
class AverageLoss(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.meters = {}
self.reset()
def reset(self):
self.meters = {}
def update(self, cur_meter, bz):
for k, v in cur_meter.items():
if k not in self.meters:
self.meters[k] = {
'avg': v.item(),
'cnt': bz
}
else:
self.meters[k]['avg'] = self.meters[k]['avg'] + \
(v.item() - self.meters[k]['avg']) * bz / (self.meters[k]['cnt'] + bz)
self.meters[k]['cnt'] += bz
def __str__(self):
out = ''
for k in self.meters:
v = self.meters[k]['avg']
out += '%s: %.4f. ' % (k.replace('_loss', '').replace('loss_', ''), v)
out = out[:-1]
return out
def items(self):
for k in self.meters:
yield (k, self.meters[k]['avg'])
def aggregate(self,):
return {
k: self.meters[k]['avg'] for k in self.meters
}