-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_spectral_bias_experiments.py
129 lines (83 loc) · 4.08 KB
/
run_spectral_bias_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import time
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from utils import *
from callbacks import *
from dataio import prepare_dataset
from models import create_model
import hyperparameters
import warnings
warnings.filterwarnings("ignore")
#os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
Base_alpha = 32
Base_N_Heads = 256**2
use_bias_sparse = False
N_Heads = [1**2, 2**2, 4**2, 8**2, 16**2, 32**2, 64**2, 128**2, 256**2]
Random_Image = perlin_noise((256, 256), 8)
Base_Model_N_Parameters = calculate_parameters(hyperparameters.INPUT_COORDINATES,
hyperparameters.BASE_HIDDEN_UNITS,
hyperparameters.BASE_N_HLAYERS,
Base_N_Heads,
Base_alpha,
use_bias_sparse)
Total_Historys = []
for counter_Image, Image in enumerate(Random_Image):
print(40*"*", f"Octave : {2 ** counter_Image}", 40*"*")
Head_Historys = []
for counter, n_heads in enumerate(N_Heads):
print(30*"*", f"Head : {n_heads}", 30*"*")
learningrate_scheduler = LearningRateScheduler()
dataset = prepare_dataset(Image, n_heads)
hidden_units, alpha_sparse = calculate_hyperparameter(Base_Model_N_Parameters,
hyperparameters.INPUT_COORDINATES,
hyperparameters.BASE_HIDDEN_UNITS,
hyperparameters.BASE_N_HLAYERS,
n_heads,
Base_alpha,
use_bias_sparse)
MH_RELU_INR = create_model("multi-head",
n_heads,
hidden_units,
alpha_sparse,
use_bias_sparse)
print("Number of Parameters : ", MH_RELU_INR.count_params())
optimizer = tf.keras.optimizers.Adam(hyperparameters.LEARNING_RATE)
loss_fn = tf.keras.losses.MeanSquaredError()
MH_RELU_INR.compile(optimizer=optimizer, loss=loss_fn)
#print(MH_RELU_INR.summary())
save_result_callback = CustomSaver(Image, n_heads, hyperparameters.STEP_SHOW, loss_fn)
start = time.time()
history = MH_RELU_INR.fit(dataset,
epochs=hyperparameters.EPOCHS,
callbacks=[learningrate_scheduler, save_result_callback],
verbose=0) # if you want to see train progress change verbose to 1
print(f"Total Time : {time.time() - start}")
Head_Historys.append(history.history["loss"])
Total_Historys.append(Head_Historys)
##################################################### Plot Result ####################################################
min_frequency_bias = PSNR(np.min(np.array(Total_Historys), axis=-1))
linestyle = ["-", "--", "-.", ":", "solid", "dashed", "dashdot", "dotted", "-."]
marker = ['o', 'v', 'p', 'P', '*', 'x', 'D', '4', 's']
for counter in range(len(marker)):
plt.plot(min_frequency_bias[:, counter], marker=marker[counter], markersize=5, linestyle=linestyle[counter])
plt.grid()
plt.minorticks_on()
plt.tick_params(axis='both', which='major', labelsize=11)
plt.tick_params(axis='both', which='minor', labelsize=8)
plt.xlim([-0.1, 7.1])
plt.ylabel("PSNR(dB)", fontsize=10, fontweight="bold")
plt.xlabel(r'$\mathbf{log_{2}{(\:Octave\:)}}}$', fontsize=10)
plt.legend([r'$\mathbf{N\:of\:\:Heads : 1 \times 1}$',
r'$\mathbf{N\:of\:\:Heads : 2 \times 2}$',
r'$\mathbf{N\:of\:\:Heads : 4 \times 4}$',
r'$\mathbf{N\:of\:\:Heads : 8 \times 8}$',
r'$\mathbf{N\:of\:\:Heads : 16 \times 16}$',
r'$\mathbf{N\:of\:\:Heads : 32 \times 32}$',
r'$\mathbf{N\:of\:\:Heads : 64 \times 64}$',
r'$\mathbf{N\:of\:\:Heads : 128 \times 128}$',
r'$\mathbf{N\:of\:\:Heads : 256 \times 256}$'], fontsize=6.2, bbox_to_anchor=(0.32,0.93))
plt.savefig("results/Frequency_Bias.pdf", dpi=500, bbox_inches='tight', pad_inches=0)
plt.show()
######################################################################################################################