-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathknn.py
130 lines (113 loc) · 4.06 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 13 14:10:13 2018
@author: USER
"""
import csv
import os
import numpy as np
def read_csv(file_name):
array_2D = []
with open(file_name, 'rb') as csvfile:
read = csv.reader(csvfile, delimiter=';')
for row in read:
array_2D.append(row)
return array_2D
def buildFold(foldTest):
path = "data/realTraining/fold/"
#pathOutput = "D:\\KULIAH\\SEMESTER VII\\SKRIPSI - OFFLINE\\DATA01\\"
tot = os.listdir(path)
#kelas = 1
fold = []
for filename in tot:
fold.append(read_csv(path+filename)) # Fold 1
#foldTest = [0]
dataUji = []
for i in range(len(foldTest)):
dataUji.extend(fold[foldTest[i]])
dataLatih = []
for i in range(len(fold)):
if (i not in foldTest):
dataLatih.extend(fold[i])
return dataLatih, dataUji
def featureSelection(listFeatures):
res = np.transpose(listFeatures)
result = []
#eliminated = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40] # Warna
#eliminated = [41,42,43,44,45,46,47,48,49,50,51,52] # Haralick
#eliminated = [4,5,14,15,24,25,26,34,35] # Relief
#eliminated = [1,2,9,10,11,12,19,20,21,22,29,30,31,32,39,40,41,42,44,45,46,48,49] # Korelasi
#eliminated = [1,2,3,5,6,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,43,46,47,48,49,50,51,52] # CFS
eliminated = [] # Tanpa Seleksi
for i in range(len(res)):
if ((i+1) not in eliminated):
resJ = []
for j in range(len(res[i])):
resJ.append(res[i][j])
result.append(resJ)
return np.transpose(result).tolist()
#data1 = read_csv('data/realTraining/dataTrain80204.csv') # Data Training
#data3 = read_csv('data/realTraining/dataTest80204.csv') # Data Testing
data2 = read_csv('data/realTraining/dataClass80204.csv') # Data Class (Vector Reference)
testFold = [0]
fold = 'fold0'
data1, data3 = buildFold(testFold)
dataTrain = ((np.array(data1[:]))[:,1:-1]).astype(np.float64).tolist()
dataC = ((np.array(data2[:]))[:,1:-1]).astype(np.float64).tolist()
dataT = ((np.array(data3[:]))[:,1:-1]).astype(np.float64).tolist()
classDataTrain = ((np.array(data1[:]))[:,-1:]).astype(int).tolist()
classDataClass = ((np.array(data2[:]))[:,-1:]).astype(int).tolist()
classDataTest = ((np.array(data3[:]))[:,-1:]).astype(int).tolist()
dataTraining = []
dataClass = []
'''
dataC = getPCAFeatures(dataC)
dataTrain = getPCAFeatures(dataTrain)
dataT = getPCAFeatures(dataT)
'''
dataC = featureSelection(dataC)
dataTrain = featureSelection(dataTrain)
dataT = featureSelection(dataT)
dataTesting = []
ignoredClass = [] # eliminated Class
#ignoredClass = [8,22,23,25,27,29]
for i in range(len(dataTrain)):
if (classDataTrain[i][0] not in ignoredClass):
dataArray = []
dataArray.append(dataTrain[i])
dataArray.append(classDataTrain[i][0])
dataTraining.append(dataArray)
for i in range(len(dataC)):
if (classDataClass[i][0] not in ignoredClass):
dataArray2 = []
dataArray2.append(dataC[i])
dataArray2.append(classDataClass[i][0])
dataClass.append(dataArray2)
#dataTesting.append(dataT[i])
for i in range(len(dataT)):
dataTesting.append(dataT[i])
wrongClass = 0
for i in range(len(dataTesting)):
classMin = -1
minValue = 999999999
for j in range(len(dataTraining)):
jarak = 0
for k in range(len(dataTraining[j][0])):
jarak += np.power(dataTesting[i][k] - dataTraining[j][0][k], 2)
jarak = np.sqrt(jarak)
'''
if(i == 0):
print(jarak)
'''
if (jarak < minValue):
minValue = jarak
classMin = dataTraining[j][1]
if (classDataTest[i][0] != classMin):
wrongClass += 1
'''
if(i == 0):
print(minValue, classMin)
'''
#print(classDataTest[i][0],classMin)
akurasi = np.divide(float(len(dataTesting) - wrongClass),float(len(dataTesting)))
print(fold, akurasi)