-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
218 lines (173 loc) · 10.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/python3
import argparse
import sys
import os
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch
from model import Generator, GlobalGenerator2, InceptionV3
from dataset import UnpairedDepthDataset
from PIL import Image
import numpy as np
from utils import channel2width
import adaattn
from Vggnet import *
from adaways import *
parser = argparse.ArgumentParser()
parser.add_argument('--name',type=str, default='chinafinal0820', help='name of this experiment')
parser.add_argument('--checkpoints_dir', type=str, default='checkpoints', help='Where the model checkpoints are saved')
parser.add_argument('--results_dir', type=str, default='results', help='where to save result images')
parser.add_argument('--geom_name', type=str, default='feats2Geom', help='name of the geometry predictor')
parser.add_argument('--batchSize', type=int, default=1, help='size of the batches')
parser.add_argument('--dataroot', type=str, default='/data2/yifan/mjt/ssart/content', help='root directory of the dataset')
parser.add_argument('--depthroot', type=str, default='/home/yifan/yf/informative-drawings-main/test_waibu/depth', help='dataset of corresponding ground truth depth maps')
parser.add_argument('--input_nc', type=int, default=3, help='number of channels of input data')
parser.add_argument('--output_nc', type=int, default=3, help='number of channels of output data')
parser.add_argument('--geom_nc', type=int, default=3, help='number of channels of geometry data')
parser.add_argument('--every_feat', type=int, default=1, help='use transfer features for the geometry loss')
parser.add_argument('--num_classes', type=int, default=55, help='number of classes for inception')
parser.add_argument('--midas', type=int, default=0, help='use midas depth map')
parser.add_argument('--ngf', type=int, default=64, help='# of gfen ilters in first conv layer')
parser.add_argument('--n_blocks', type=int, default=3, help='number of resnet blocks for generator')
parser.add_argument('--size', type=int, default=256, help='size of the data (squared assumed)')
parser.add_argument('--cuda', action='store_true', help='use GPU computation', default=True)
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--which_epoch', type=str, default='04', help='which epoch to load from')
parser.add_argument('--aspect_ratio', type=float, default=1.0, help='The ratio width/height. The final height of the load image will be crop_size/aspect_ratio')
parser.add_argument('--mode', type=str, default='test', help='train, val, test, etc')
parser.add_argument('--load_size', type=int, default=128, help='scale images to this size')
parser.add_argument('--crop_size', type=int, default=128, help='then crop to this size')
parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]')
parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization')
parser.add_argument('--predict_depth', type=int, default=0, help='run geometry prediction on the generated images')
parser.add_argument('--save_input', type=int, default=0, help='save input image')
parser.add_argument('--reconstruct', type=int, default=0, help='get reconstruction')
parser.add_argument('--how_many', type=int, default=5000, help='number of images to test')
### adaattn parameters
parser.add_argument('--lambda_content', type=float, default=0., help='weight for L2 content loss')
parser.add_argument('--lambda_global', type=float, default=10., help='weight for L2 style loss')
parser.add_argument('--lambda_local', type=float, default=3.,help='weight for attention weighted style loss')
parser.add_argument('--skip_connection_3',default=True,help='if specified, add skip connection on ReLU-3')
parser.add_argument('--shallow_layer',default=True,help='if specified, also use features of shallow layers')
parser.add_argument('--init_type', type=str, default='normal',help='network initialization [normal | xavier | kaiming | orthogonal]')
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
opt = parser.parse_args()
print(opt)
opt.no_flip = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")\
# os.environ["CUDA_VISIBLE_DEVICES"] = "3" # 使用索引为 0 的 GPU 设备
adaway = Ada_way(opt)
with torch.no_grad():
# Networks
max_sample = 64 * 64
if opt.skip_connection_3:
adaattn_3 = adaattn.AdaAttN(in_planes=256, key_planes=256 + 128 + 64 if opt.shallow_layer else 256,
max_sample=max_sample)
net_adaattn_3 = adaattn.init_net(adaattn_3, opt.init_type, opt.init_gain)
net_adaattn_3.load_state_dict(torch.load(os.path.join(opt.checkpoints_dir, opt.name, 'adaattn3_%s.pth' % opt.which_epoch)))
if opt.shallow_layer:
channels = 512 + 256 + 128 + 64
else:
channels = 512
transformer = adaattn.Transformer(
in_planes=512, key_planes=channels, shallow_layer=opt.shallow_layer)
net_transformer = adaattn.init_net(transformer, opt.init_type, opt.init_gain)
net_transformer.load_state_dict(torch.load(os.path.join(opt.checkpoints_dir, opt.name,'transformer_%s.pth'% opt.which_epoch)))
# define Vgg
vggnet = Vgg_net()
net_G = 0
net_G = adaattn.Decoder(opt.shallow_layer)
net_G.cuda()
net_GB = 0
if opt.reconstruct == 1:
net_GB = Generator(opt.output_nc, opt.input_nc, opt.n_blocks,type = False)
net_GB.cuda()
net_GB.load_state_dict(torch.load(os.path.join(opt.checkpoints_dir, opt.name, 'netG_B_%s.pth' % opt.which_epoch)))
net_GB.eval()
netGeom = 0
if opt.predict_depth == 1:
usename = opt.name
if (len(opt.geom_name) > 0) and (os.path.exists(os.path.join(opt.checkpoints_dir, opt.geom_name))):
usename = opt.geom_name
myname = os.path.join(opt.checkpoints_dir, usename, 'netGeom_%s.pth' % opt.which_epoch)
netGeom = GlobalGenerator2(768, opt.geom_nc, n_downsampling=1, n_UPsampling=3)
netGeom.load_state_dict(torch.load(myname))
netGeom.cuda()
netGeom.eval()
numclasses = opt.num_classes
### load pretrained inception
net_recog = InceptionV3(opt.num_classes, False, use_aux=True, pretrain=True, freeze=True, every_feat=opt.every_feat==1)
net_recog.cuda()
net_recog.eval()
# Load state dicts
# net_G.load_state_dict(torch.load(os.path.join(opt.checkpoints_dir, opt.name, 'netG_A_%s.pth' % opt.which_epoch)))
# print('loaded', os.path.join(opt.checkpoints_dir, opt.name, 'netG_A_%s.pth' % opt.which_epoch))
net_G.load_state_dict(torch.load(os.path.join(opt.checkpoints_dir, opt.name, 'netG_A_%s.pth' % opt.which_epoch)))
# Set model's test mode
net_G.eval()
transforms_r = [transforms.Resize([int(opt.size),int(opt.size)],Image.BICUBIC),
transforms.ToTensor()]
style_list = os.listdir('/data2/yifan/mjt/ssart/style')
test_data = UnpairedDepthDataset(opt.dataroot, '', opt, transforms_r=transforms_r,
mode=opt.mode, midas=opt.midas > 0, depthroot=opt.depthroot)
dataloader = DataLoader(test_data, batch_size=opt.batchSize, shuffle=False)
###################################
###### Testing######
full_output_dir = os.path.join(opt.results_dir, opt.name)
if not os.path.exists(full_output_dir):
os.makedirs(full_output_dir)
for i, batch in enumerate(dataloader):
# if i > opt.how_many:
# break;
img_r = Variable(batch['r']).cuda()
img_depth = Variable(batch['depth']).cuda()
style_path = '/data2/yifan/mjt/ssart/style/' + batch['name'][0] + '.jpg'
name = batch['name'][0]
if int(name) <=5000 and int(name) >= 1:
img_s = Image.open(style_path).convert('RGB')
transforms_rs = transforms.Compose(transforms_r)
img_s = transforms_rs(img_s)
img_s = img_s.unsqueeze(0)
img_s = img_s.cuda()
print(style_path)
real_A = img_r
input_image = real_A
real_A_feat = vggnet.encode_with_intermediate(input_image) # G_A(A)
style_A_feat = vggnet.encode_with_intermediate(img_s)
if opt.skip_connection_3:
c_adain_feat_3 = net_adaattn_3(real_A_feat[2], style_A_feat[2],
adaway.get_key(real_A_feat, 2, opt.shallow_layer),
adaway.get_key(style_A_feat, 2, opt.shallow_layer), adaway.seed)
else:
c_adain_feat_3 = None
cs = net_transformer(real_A_feat[3], style_A_feat[3], real_A_feat[4], style_A_feat[4],
adaway.get_key(real_A_feat, 3, opt.shallow_layer),
adaway.get_key(style_A_feat, 3, opt.shallow_layer),
adaway.get_key(real_A_feat, 4, opt.shallow_layer),
adaway.get_key(style_A_feat, 4, opt.shallow_layer), adaway.seed)
# print(c_adain_feat_3.shape)
# print(cs.shape)
image = net_G(cs, c_adain_feat_3, real_A_feat)
save_image(image.data, full_output_dir + '/%s.jpg' % name)
if (opt.predict_depth == 1):
geom_input = image
if geom_input.size()[1] == 1:
geom_input = geom_input.repeat(1, 3, 1, 1)
_, geom_input = net_recog(geom_input)
geom = netGeom(geom_input)
geom = (geom+1)/2.0 ###[-1, 1] ---> [0, 1]
input_img_fake = channel2width(geom)
save_image(input_img_fake.data, full_output_dir+'/%s_geom.png' % name)
if opt.reconstruct == 1:
rec = net_GB(image,0)
save_image(rec.data, full_output_dir+'/%s_rec.png' % name)
if opt.save_input == 1:
save_image(img_r, full_output_dir+'/%s_input.png' % name)
sys.stdout.write('\rGenerated images %04d of %04d' % (i, opt.how_many))
sys.stdout.write('\n')
###################################