-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
52 lines (44 loc) · 1.5 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
# tunit model
def queue_data(data, k):
return torch.cat([data, k], dim=0)
def dequeue_data(data, K=1024):
if len(data) > K:
d = int(-K/2)
return data[d:]
else:
return data
def initialize_queue(model_k, device, train_loader, feat_size=64):
queue = torch.zeros((0, feat_size), dtype=torch.float)
queue = queue.to(device)
for _, (data, _) in enumerate(train_loader):
x_k = data[1]
x_k = x_k.cuda(device)
outs = model_k(x_k)
k = outs['cont']
k = k.detach()
queue = queue_data(queue, k)
queue = dequeue_data(queue, K=1024)
break
return queue
class MemoryBank(object):
def __init__(self, device):
self.device = device
self.dim = 64
self.len = 128
self.queue = torch.zeros((0, self.dim), dtype=torch.float).to(device)
def init_queue(self, models, train_loader):
for idx, (_, ref_data, _) in enumerate(train_loader):
ref_data = ref_data.to(self.device)
_, out = models(ref_data)
out = out.detach()
self.queue = torch.cat([self.queue, out], dim=0)
if idx+1 >= self.len:
break
return self.queue
def get_queue(self):
return self.queue
def update_queue(self, data):
self.queue = torch.cat([self.queue, data], dim=0)
if len(self.queue) > self.len:
self.queue = self.queue[-self.len:]