-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patho1_groq.py
197 lines (167 loc) · 8.68 KB
/
o1_groq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# File path: g1_app_optimized_confirm.py
import streamlit as st
import groq
import os
import json
import time
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Centralized configuration
CONFIG = {
'GROQ_MODEL': os.getenv('GROQ_MODEL', 'llama-3.1-70b-versatile'),
'DEFAULT_TEMPERATURE': float(os.getenv('DEFAULT_TEMPERATURE', 0.2)),
'DEFAULT_MAX_TOKENS': int(os.getenv('DEFAULT_MAX_TOKENS', 300))
}
# Groq client
client = groq.Groq()
# Add caching to avoid redundant API calls
@st.cache_data
def make_api_call(messages, max_tokens, temperature, is_final_answer=False):
for attempt in range(3):
try:
response = client.chat.completions.create(
model=CONFIG['GROQ_MODEL'],
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
except Exception as e:
if attempt == 2:
return {
"title": "Error",
"content": f"Failed to generate final answer after 3 attempts. Error: {str(e)}" if is_final_answer
else f"Failed to generate step after 3 attempts. Error: {str(e)}",
"next_action": "final_answer" if not is_final_answer else None
}
time.sleep(1)
# Generate the reasoning response in steps
def generate_response(prompt, max_tokens, temperature):
messages = [
{"role": "system", "content": """You are an advanced AI reasoning assistant tasked with delivering a comprehensive analysis of a specific problem or question. Your goal is to outline your reasoning process in a structured and transparent manner, with each step reflecting a thorough examination of the issue at hand, culminating in a well-reasoned conclusion.
### Structure for Each Reasoning Step:
1. **Title**: Clearly label the phase of reasoning you are currently in.
2. **Content**: Provide a detailed account of your thought process, explaining your rationale and the steps taken to arrive at your conclusions.
3. **Next Action**: Decide whether to continue with further reasoning or if you are ready to provide a final answer.
### Response Format:
Please return the results in the following JSON format:
- `title`: A brief label for the current reasoning phase.
- `content`: An in-depth explanation of your reasoning process for this step.
- `next_action`: Choose `'continue'` to proceed with further reasoning or `'final_answer'` to conclude.
### Key Instructions:
1. Conduct **at least 5 distinct reasoning steps**, each building on the previous one.
2. **Acknowledge the limitations** inherent to AI, specifically what you can accurately assess and what you may struggle with.
3. **Adopt multiple reasoning frameworks** to resolve the problem or derive conclusions, such as:
- **Deductive reasoning** (drawing specific conclusions from general principles)
- **Inductive reasoning** (deriving broader generalizations from specific observations)
- **Abductive reasoning** (choosing the best possible explanation for the given evidence)
- **Analogical reasoning** (solving problems through comparisons and analogies)
4. **Critically analyze your reasoning** to identify potential flaws, biases, or gaps in logic.
5. When reviewing, apply a **fundamentally different perspective or approach** to enhance your analysis.
6. **Employ at least 2 distinct reasoning methods** to derive or verify the accuracy of your conclusions.
7. **Incorporate relevant domain knowledge** and **best practices** where applicable, ensuring your reasoning aligns with established standards.
8. **Quantify certainty levels** for each step and your final conclusion, where applicable.
9. Consider potential **edge cases or exceptions** that could impact the outcome of your reasoning.
10. Provide **clear justifications** for dismissing alternative hypotheses or solutions that arise during your analysis.
### Example JSON Output:
```json
{
"title": "Initial Problem Analysis",
"content": "To approach this problem effectively, I'll first break down the given information into key components. This involves identifying... [detailed explanation]... By structuring the problem in this way, we can systematically address each aspect.",
"next_action": "continue"
}
```"""},
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Thank you! I will now think step by step..."}
]
steps = []
step_count = 1
total_thinking_time = 0
while True:
start_time = time.time()
step_data = make_api_call(messages, max_tokens, temperature)
thinking_time = time.time() - start_time
total_thinking_time += thinking_time
steps.append((f"Step {step_count}: {step_data['title']}", step_data['content'], thinking_time))
messages.append({"role": "assistant", "content": json.dumps(step_data)})
if step_data['next_action'] == 'final_answer':
break
step_count += 1
# Final answer step
final_data = make_api_call(messages, 200, temperature, is_final_answer=True)
steps.append(("Final Answer", final_data['content'], thinking_time))
return steps, total_thinking_time
# Main Streamlit app
def main():
st.set_page_config(page_title="g1 prototype", page_icon="🧠", layout="wide")
# Sidebar settings
with st.sidebar:
st.title("Settings")
st.markdown("Adjust the parameters below:")
temperature = st.slider('Temperature', min_value=0.0, max_value=1.0, value=CONFIG['DEFAULT_TEMPERATURE'], key='temperature_slider')
max_tokens = st.number_input('Max Tokens', min_value=50, max_value=20000, value=CONFIG['DEFAULT_MAX_TOKENS'], key='max_tokens_input')
st.markdown("---")
st.markdown("**Current Configuration**")
st.markdown(f"**Model**: `{CONFIG['GROQ_MODEL']}`")
st.markdown(f"**Temperature**: `{temperature}`")
st.markdown(f"**Max Tokens**: `{max_tokens}`")
st.title("g1: Using Llama-3.1 70b on Groq to create o1-like reasoning chains")
# Custom CSS for improved UI aesthetics
st.markdown("""
<style>
.stTextInput > div > label {
font-size: 20px;
color: #1f77b4;
}
.stButton > button {
background-color: #4CAF50;
color: white;
padding: 12px 24px;
font-size: 16px;
border: none;
cursor: pointer;
}
.stButton > button:hover {
background-color: #45a049;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
This is an early prototype of using prompting to create o1-like reasoning chains to improve output accuracy.
It is not perfect, and accuracy has yet to be formally evaluated.
It is powered by Groq to ensure fast reasoning steps!
Forked from [bklieger-groq](https://github.com/bklieger-groq)
Open source [repository here](https://github.com/Ai-trainee/o1-flow)
""")
# User query input
user_query = st.text_input("Enter your query:", placeholder="e.g., How many 'R's are in the word strawberry?")
# Add a button for confirmation of execution
if st.button("Run Query"):
if user_query.strip() == "":
st.warning("Please enter a valid query.")
else:
st.write("Generating response...")
# Add a loading spinner while generating responses
with st.spinner('Processing your query...'):
# Generate and display the response
steps, total_thinking_time = generate_response(user_query, max_tokens, temperature)
# Display response with progress
progress_bar = st.progress(0)
for idx, (title, content, thinking_time) in enumerate(steps):
progress_bar.progress((idx + 1) / len(steps))
if title == "Final Answer":
st.subheader(f"{title}")
st.write(content.replace('\n', '<br>'), unsafe_allow_html=True)
else:
with st.expander(f"{title} ({thinking_time:.2f}s)", expanded=True):
st.write(content.replace('\n', '<br>'), unsafe_allow_html=True)
# Display total thinking time
st.success(f"**Total thinking time: {total_thinking_time:.2f} seconds**")
# Option to download results
if st.button("Download Results"):
json_data = json.dumps([{"title": title, "content": content} for title, content, _ in steps], indent=4)
st.download_button("Download", json_data, file_name="reasoning_results.json", mime="application/json")
if __name__ == "__main__":
main()