forked from ml-implementations/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPPO_keras.py
200 lines (166 loc) · 7.74 KB
/
PPO_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import random
import fire
from keras import models
from keras.layers import Input, Dense
from keras.models import Model
from keras.optimizers import Adam
import keras.backend as K
import gym
import numpy as np
import tensorflow as tf
"""
Implementation of Proximal Policy Optimization on A2C with TD-0 value returns in Keras
"""
# limit gpu memory usage
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
K.set_session(sess)
class ProximalPolicyOptimization:
def __init__(self):
self.env = gym.make('CartPole-v1')
self.state_shape = self.env.observation_space.shape
self.action_shape = self.env.action_space.n
self.old_actor = None
self.old_actor_predict_only = None
self.actor = None
self.actor_predict_only = None
self.critic = None
self.replay_buffer = []
self.replay_buffer_size_thresh = 100000
self.batch_size = 64
self.episodes = 1000
self.max_steps = 1000
self.test_episodes = 100
self.discount_factor = 0.99
self.test_rewards = []
self.actor_lr = 0.001
self.critic_lr = 0.005
self.epochs = 10
self.model_path = "models/PPO-CartPole.hdf5"
def create_actor_model(self):
inputs = Input(shape=self.state_shape)
old_policy = Input(shape=(self.action_shape, ))
advantages = Input(shape=(self.action_shape, ))
fc1 = Dense(24, activation='relu', kernel_initializer="he_uniform")(inputs)
output = Dense(self.action_shape, activation='softmax', kernel_initializer='he_uniform')(fc1)
model = Model(inputs=[inputs, old_policy, advantages], outputs=output)
model.add_loss(self.clipped_surrogate_objective(old_policy, output, advantages))
model.compile(optimizer=Adam(lr=self.actor_lr), loss=None)
model.summary()
model_predict_only = Model(inputs=inputs, outputs=output)
model_predict_only.add_loss(self.clipped_surrogate_objective(old_policy, output, advantages))
model_predict_only.compile(optimizer=Adam(lr=self.actor_lr), loss=None)
return model, model_predict_only
@staticmethod
def clipped_surrogate_objective(old_policy, new_policy, advantages):
ratio = new_policy / (old_policy + 1e-10)
clipped_ratio = K.clip(ratio, 0.8, 1.2)
loss = K.minimum(ratio*advantages, clipped_ratio*advantages)
return -K.mean(loss)
def create_critic_model(self):
inputs = Input(shape=self.state_shape)
fc1 = Dense(24, activation='relu', kernel_initializer="he_uniform")(inputs)
output = Dense(1, activation='linear', kernel_initializer='he_uniform')(fc1)
model = Model(inputs=inputs, outputs=output)
model.compile(optimizer=Adam(lr=self.critic_lr), loss='mse')
model.summary()
self.critic = model
def save_to_memory(self, experience):
if len(self.replay_buffer) > self.replay_buffer_size_thresh:
del self.replay_buffer[0]
self.replay_buffer.append(experience)
def sample_from_memory(self):
return random.sample(self.replay_buffer,
min(len(self.replay_buffer), self.batch_size))
def fill_empty_memory(self):
observation = self.env.reset()
for _ in range(10000):
new_observation, action, reward, done = self.take_action(observation)
reward = reward if not done else -100
self.save_to_memory((observation, action, reward, done, new_observation))
if done:
new_observation = self.env.reset()
observation = new_observation
def take_action(self, state):
action_probs = self.actor_predict_only.predict(np.expand_dims(state, axis=0))
action = np.random.choice(range(action_probs.shape[1]), p=action_probs.ravel())
new_observation, reward, done, info = self.env.step(action)
return new_observation, action, reward, done
def get_old_actor_prediction(self, state):
action_probs = self.old_actor_predict_only.predict(np.array(state), batch_size=self.batch_size)
return action_probs
def optimize_model(self):
minibatch = self.sample_from_memory()
states = []
v_targets = []
advantages = []
# update V targets
for idx, (state, act, rew, done, next_state) in enumerate(minibatch):
states.append(state)
action_one_hot = np.zeros(self.action_shape)
curr_state_v_vals = self.critic.predict(np.expand_dims(np.asarray(list(state)), axis=0))
next_state_v_value = self.critic.predict(np.expand_dims(np.asarray(list(next_state)), axis=0))
if done:
v_targets.append(rew)
action_one_hot[act] = rew - curr_state_v_vals[0]
advantages.append(action_one_hot)
else:
old_v = curr_state_v_vals[0].copy()
curr_state_v_vals[0] = rew + self.discount_factor * next_state_v_value[0]
action_one_hot[act] = curr_state_v_vals[0] - old_v
advantages.append(action_one_hot)
v_targets.append(curr_state_v_vals[0])
# predict using old policy
old_actor_prediction = self.get_old_actor_prediction(states)
ac_input = [np.array(states),
np.array(old_actor_prediction),
np.array(advantages)]
# fit models
self.actor.fit(ac_input, batch_size=len(minibatch), epochs=self.epochs, verbose=0)
self.critic.fit(np.asarray(states), np.asarray(v_targets), batch_size=len(minibatch), verbose=0)
self.old_actor.set_weights(self.actor.get_weights())
def train(self):
self.actor, self.actor_predict_only = self.create_actor_model()
self.old_actor, self.old_actor_predict_only = self.create_actor_model()
self.create_critic_model()
self.fill_empty_memory()
total_reward = 0
for ep in range(self.episodes):
episode_rewards = []
observation = self.env.reset()
for step in range(self.max_steps):
new_observation, action, reward, done = self.take_action(observation)
reward = reward if not done else -100
self.save_to_memory((observation, action, reward, done, new_observation))
episode_rewards.append(reward)
observation = new_observation
self.optimize_model()
if done:
break
# episode summary
total_reward += np.sum(episode_rewards)
print("Episode : ", ep)
print("Episode Reward : ", np.sum(episode_rewards))
print("Total Mean Reward: ", total_reward / (ep + 1))
print("==========================================")
self.actor.save(self.model_path)
def test(self):
# test agent
actor = models.load_model(self.model_path, compile=False)
for i in range(self.test_episodes):
observation = np.asarray(list(self.env.reset()))
total_reward_per_episode = 0
while True:
self.env.render()
action_probs = actor.predict(np.expand_dims(observation, axis=0))
action = np.random.choice(range(action_probs.shape[1]), p=action_probs.ravel())
new_observation, reward, done, info = self.env.step(action)
total_reward_per_episode += reward
observation = new_observation
if done:
break
self.test_rewards.append(total_reward_per_episode)
print("Average reward for test agent: ", sum(self.test_rewards) / self.test_episodes)
if __name__ == '__main__':
fire.Fire(ProximalPolicyOptimization)