-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_dataset.py
76 lines (60 loc) · 2.31 KB
/
create_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import pickle
import mediapipe as mp
import cv2
# Suppress TensorFlow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '4' # FATAL
# Initialize MediaPipe Hands
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
# Setup MediaPipe Hands
hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3)
# Define the data directory
DATA_DIR = './data'
# Initialize lists to hold data and labels
data = []
labels = []
# Ensure the data directory exists
if not os.path.exists(DATA_DIR):
print(f"Error: The directory {DATA_DIR} does not exist.")
exit()
# Iterate over each class directory in the data directory
for dir_ in os.listdir(DATA_DIR):
class_dir = os.path.join(DATA_DIR, dir_)
if not os.path.isdir(class_dir):
continue # Skip non-directory files
# Iterate over each image in the class directory
for img_path in os.listdir(class_dir):
img_file_path = os.path.join(class_dir, img_path)
if not os.path.isfile(img_file_path):
continue # Skip if not a file
data_aux = []
x_ = []
y_ = []
# Read and process the image
img = cv2.imread(img_file_path)
if img is None:
print(f"Error: Unable to read image {img_file_path}.")
continue
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = hands.process(img_rgb)
# Process the hand landmarks if detected
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
x_.append(x)
y_.append(y)
for i in range(len(hand_landmarks.landmark)):
x = hand_landmarks.landmark[i].x
y = hand_landmarks.landmark[i].y
data_aux.append(x - min(x_))
data_aux.append(y - min(y_))
data.append(data_aux)
labels.append(dir_)
# Save the collected data and labels to a pickle file
with open('data.pickle', 'wb') as f:
pickle.dump({'data': data, 'labels': labels}, f)
print("Data collection and saving complete.")