-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
100 lines (66 loc) · 2.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import time
from options.train_options import TrainOptions
from data.custom_dataset_data_loader import CustomDatasetDataLoader
from util.visualizer import Visualizer
import copy
from tqdm import tqdm
import numpy as np
import torch
from models.base_model import BaseModel
torch.manual_seed(0)
opt = TrainOptions().parse()
data_loader = CustomDatasetDataLoader(opt)
dataset = data_loader.load_data()
opt_for_eval = copy.deepcopy(opt)
opt_for_eval.isTrain = False
opt_for_eval.max_dataset_size = 1000
val_loader = CustomDatasetDataLoader(opt_for_eval)
valset = val_loader.load_data()
dataset_size = len(data_loader)
print('#training samples = %d' % dataset_size)
model = BaseModel(opt)
visualizer = Visualizer(opt)
total_steps = 0
best_l1 = np.inf
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
iter_start_time = 0
for i, data in enumerate(dataset):
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.forward()
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
model.optimize_parameters()
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
iter_start_time = time.time()
if epoch % 100 == 0:
print('saving the model (epoch %d, total_steps %d)' % (epoch, total_steps))
model.save(epoch)
model.switch_mode('eval')
l1s = []
for i, data in enumerate(tqdm(valset)):
model.set_input(data)
model.forward()
res = model.evaluate()
l1s.append(res['L1'])
print('eval metric: L1 %f' %(np.mean(l1s)))
if np.mean(l1s) < best_l1:
model.save('best')
message = 'Update best checkpoint at end of epoch %d' % epoch
with open(visualizer.log_name, "a") as log_file:
log_file.write('%s l1: %f\n' % (message, np.mean(l1s)))
print(message)
best_l1 = np.mean(l1s)
model.switch_mode('train')
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()