-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmain_resnet.py
225 lines (199 loc) · 9.56 KB
/
main_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
import copy
import datetime
import os
import random
import shutil
import time
import numpy as np
import ray
import torch
import torch.backends.cudnn as cudnn
from config import cfg
from data import fetch_dataset, make_data_loader, split_dataset
from logger import Logger
from metrics import Metric
from models import resnet
from resnet_client import ResnetClient
from utils import save, to_device, process_control, process_dataset, make_optimizer, make_scheduler, collate
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
parser = argparse.ArgumentParser(description='cfg')
for k in cfg:
exec('parser.add_argument(\'--{0}\', default=cfg[\'{0}\'], type=type(cfg[\'{0}\']))'.format(k))
parser.add_argument('--control_name', default=None, type=str)
parser.add_argument('--seed', default=None, type=int)
parser.add_argument('--devices', default=None, nargs='+', type=int)
parser.add_argument('--algo', default='roll', type=str)
parser.add_argument('--weighting', default='avg', type=str)
# parser.add_argument('--lr', default=None, type=int)
parser.add_argument('--g_epochs', default=None, type=int)
parser.add_argument('--l_epochs', default=None, type=int)
parser.add_argument('--overlap', default=None, type=float)
parser.add_argument('--schedule', default=None, nargs='+', type=int)
# parser.add_argument('--exp_name', default=None, type=str)
args = vars(parser.parse_args())
cfg['overlap'] = args['overlap']
cfg['weighting'] = args['weighting']
cfg['init_seed'] = int(args['seed'])
if args['algo'] == 'roll':
from resnet_server import ResnetServerRoll as Server
elif args['algo'] == 'random':
from resnet_server import ResnetServerRandom as Server
elif args['algo'] == 'static':
from resnet_server import ResnetServerStatic as Server
if args['devices'] is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(i) for i in args['devices']])
for k in cfg:
cfg[k] = args[k]
if args['control_name']:
cfg['control'] = {k: v for k, v in zip(cfg['control'].keys(), args['control_name'].split('_'))} \
if args['control_name'] != 'None' else {}
cfg['control_name'] = '_'.join([cfg['control'][k] for k in cfg['control']])
cfg['pivot_metric'] = 'Global-Accuracy'
cfg['pivot'] = -float('inf')
cfg['metric_name'] = {'train': {'Local': ['Local-Loss', 'Local-Accuracy']},
'test': {'Local': ['Local-Loss', 'Local-Accuracy'], 'Global': ['Global-Loss', 'Global-Accuracy']}}
ray.init()
rates = None
def main():
process_control()
if args['schedule'] is not None:
cfg['milestones'] = args['schedule']
if args['g_epochs'] is not None and args['l_epochs'] is not None:
cfg['num_epochs'] = {'global': args['g_epochs'], 'local': args['l_epochs']}
cfg['init_seed'] = int(args['seed'])
seeds = list(range(cfg['init_seed'], cfg['init_seed'] + cfg['num_experiments']))
for i in range(cfg['num_experiments']):
model_tag_list = [str(seeds[i]), cfg['data_name'], cfg['subset'], cfg['model_name'], cfg['control_name']]
cfg['model_tag'] = '_'.join([x for x in model_tag_list if x])
print('Experiment: {}'.format(cfg['model_tag']))
print('Seed: {}'.format(cfg['init_seed']))
run_experiment()
return
def run_experiment():
seed = int(cfg['model_tag'].split('_')[0])
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
torch.set_deterministic_debug_mode('default')
os.environ['PYTHONHASHSEED'] = str(seed)
dataset = fetch_dataset(cfg['data_name'], cfg['subset'])
process_dataset(dataset)
global_model = resnet.resnet18(model_rate=cfg["global_model_rate"], cfg=cfg).to(cfg['device'])
optimizer = make_optimizer(global_model, cfg['lr'])
scheduler = make_scheduler(optimizer)
last_epoch = 1
data_split, label_split = split_dataset(dataset, cfg['num_users'], cfg['data_split_mode'])
logger_path = os.path.join('output', 'runs', 'train_{}'.format(f'{cfg["model_tag"]}_{cfg["exp_name"]}'))
logger = Logger(logger_path)
num_active_users = int(np.ceil(cfg['frac'] * cfg['num_users']))
cfg['active_user'] = num_active_users
cfg_id = ray.put(cfg)
dataset_ref = {
'dataset': ray.put(dataset['train']),
'split': ray.put(data_split['train']),
'label_split': ray.put(label_split)}
server = Server(global_model, cfg['model_rate'], dataset_ref, cfg_id)
local = [ResnetClient.remote(logger.log_path, [cfg_id]) for _ in range(num_active_users)]
rates = server.model_rate
for epoch in range(last_epoch, cfg['num_epochs']['global'] + 1):
t0 = time.time()
logger.safe(True)
scheduler.step()
lr = optimizer.param_groups[0]['lr']
local, param_idx, user_idx = server.broadcast(local, lr)
t1 = time.time()
num_active_users = len(local)
start_time = time.time()
dt = ray.get([client.step.remote(m, num_active_users, start_time)
for m, client in enumerate(local)])
local_parameters = [v for _k, v in enumerate(dt)]
# for i, p in enumerate(local_parameters):
# with open(f'local_param_pulled_{i}.pickle', 'w') as f:
# pickle.dump(p, f)
# local_parameters = [{k: torch.tensor(v, device=cfg['device']) for k, v in p.items()} for p in local_parameters]
# for lp in local_parameters:
# for k, p in lp.items():
# print(k, torch.var_mean(p, unbiased=False))
# local_parameters = [None for _ in range(num_active_users)]
# for m in range(num_active_users):
# local[m].step(m, num_active_users, start_time)
# local_parameters[m] = local[m].pull()
t2 = time.time()
server.step(local_parameters, param_idx, user_idx)
t3 = time.time()
global_model = server.global_model
test_model = global_model
t4 = time.time()
test(dataset['test'], data_split['test'], label_split, test_model, logger, epoch, local)
t5 = time.time()
logger.safe(False)
model_state_dict = global_model.state_dict()
save_result = {
'cfg': cfg, 'epoch': epoch + 1, 'data_split': data_split, 'label_split': label_split,
'model_dict': model_state_dict, 'optimizer_dict': optimizer.state_dict(),
'scheduler_dict': scheduler.state_dict(), 'logger': logger}
save(save_result, './output/model/{}_checkpoint.pt'.format(cfg['model_tag']))
if cfg['pivot'] < logger.mean['test/{}'.format(cfg['pivot_metric'])]:
cfg['pivot'] = logger.mean['test/{}'.format(cfg['pivot_metric'])]
shutil.copy('./output/model/{}_checkpoint.pt'.format(cfg['model_tag']),
'./output/model/{}_best.pt'.format(cfg['model_tag']))
logger.reset()
t6 = time.time()
print(f'Broadcast Time : {datetime.timedelta(seconds=t1 - t0)}')
print(f'Client Step Time : {datetime.timedelta(seconds=t2 - t1)}')
print(f'Server Step Time : {datetime.timedelta(seconds=t3 - t2)}')
print(f'Stats Time : {datetime.timedelta(seconds=t4 - t3)}')
print(f'Test Time : {datetime.timedelta(seconds=t5 - t4)}')
print(f'Output Copy Time : {datetime.timedelta(seconds=t6 - t5)}')
print(f'<<Total epoch Time>>: {datetime.timedelta(seconds=t6 - t0)}')
logger.safe(False)
[ray.kill(client) for client in local]
return
def test(dataset, data_split, label_split, model, logger, epoch, local):
with torch.no_grad():
model.train(False)
dataset_id = ray.put(dataset)
data_split_id = ray.put(data_split)
model_id = ray.put(copy.deepcopy(model))
label_split_id = ray.put(label_split)
all_res = []
for m in range(0, cfg['num_users'], len(local)):
processes = []
for k in range(m, min(m + len(local), cfg['num_users'])):
processes.append(local[k % len(local)]
.test_model_for_user.remote(k,
[dataset_id, data_split_id, model_id, label_split_id]))
results = ray.get(processes)
for result in results:
all_res.append(result)
for r in result:
evaluation, input_size = r
logger.append(evaluation, 'test', input_size)
# Save all_res for plotting
# torch.save((all_res, rates), f'./output/runs/{cfg["model_tag"]}_real_world.pt')
data_loader = make_data_loader({'test': dataset})['test']
metric = Metric()
model.cuda()
for i, data_input in enumerate(data_loader):
data_input = collate(data_input)
input_size = data_input['img'].size(0)
data_input = to_device(data_input, 'cuda')
output = model(data_input)
output['loss'] = output['loss'].mean() if cfg['world_size'] > 1 else output['loss']
evaluation = metric.evaluate(cfg['metric_name']['test']['Global'], data_input, output)
logger.append(evaluation, 'test', input_size)
info = {'info': ['Model: {}'.format(cfg['model_tag']),
'Test Epoch: {}({:.0f}%)'.format(epoch, 100.)]}
logger.append(info, 'test', mean=False)
logger.write('test', cfg['metric_name']['test']['Local'] + cfg['metric_name']['test']['Global'])
return
if __name__ == "__main__":
main()