-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathMEICAESV6.m
948 lines (863 loc) · 33.2 KB
/
MEICAESV6.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
%========================================================================
% Function: Dispatch of Zero-Carbon-Emisssion Micro Energy Internet
% Author: Li Rui
% Version: 1.5
% Data: 2016/04/19 PDN
% 2016/05/26 PDN + OLTC
% 2016/06/07 heat network + power network
% 2016/06/12 add CAES with power
% 2016/06/15 add CAES with heat
% 2016/06/15 add Power from Power grid
% 2016/06/16 add peak off price
% 2016/06/18 change the capacity of NSF-CAES system
% 2016/06/19 revise the active power equation by adding power consumption of heat pump
% 2016/09/07 revise the SOC of TES of CAES figure
% 2016/09/17 consider the active power loss and reactive power loss
% of DistFlow model
% 2016/09/17 consider the SOCP constraint of DistFlow model to
% convert the original MILP model as a MISOCP one
%========================================================================
clc
close all
clear all
format short
NT = 24; % total dispatch period
Nc = 2; % total stages of compressor
Ne = 2; % total stages of turbine
Sb = 10; % Base power MW
Vb= 12.66; % Base Voltage kV
Zb = Vb^2/Sb; % Base impedence
Ib = Sb/(sqrt(3)*Vb); % kA
%% Power Bus
% No.(1)|Type(2)|Pd(3)|Qd(4)
powerbus = [
1 3 0 0; % MW MVar
2 1 0.100 0.060;
3 1 0.090 0.040;
4 1 0.120 0.080;
5 1 0.060 0.030;
6 1 0.060 0.020;
7 1 0.200 0.100;
8 1 0.200 0.100;
9 1 0.060 0.020;
10 1 0.060 0.020;
11 1 0.045 0.030;
12 1 0.060 0.035;
13 1 0.060 0.035;
14 1 0.120 0.080;
15 1 0.060 0.010;
16 1 0.060 0.020;
17 1 0.060 0.020;
18 1 0.090 0.040;
19 1 0.090 0.040;
20 1 0.090 0.040;
21 1 0.090 0.040;
22 1 0.090 0.040;
23 1 0.090 0.050;
24 1 0.420 0.200;
25 1 0.420 0.200;
26 1 0.060 0.025;
27 1 0.060 0.025;
28 1 0.060 0.020;
29 1 0.120 0.070;
30 1 0.200 0.100;
31 1 0.150 0.070;
32 1 0.210 0.100;
33 1 0.060 0.040;
];
N_bus1 = size(powerbus,1);
Pd_ratio = powerbus(:,3)/sum(powerbus(:,3)); % Active load ratio
Qd_ratio = powerbus(:,4)/sum(powerbus(:,4)); % Reactive load ratio
Pd0 = [63 62 60 58 59 65 72 85 95 99 100 99 93 92 90 88 90 92 96 98 96 90 80 70]/15-1.5;% MW
Qd0 = [18 16 15 14 15.5 15 16 17 18 19 20 20.5 21 20.5 21 19.5 20 20 19.5 19.5 18.5 18.5 18 18]/10; % system load MVar
Pd = Pd_ratio * Pd0;
Qd = Qd_ratio * Qd0;
Pd = Pd/Sb;
Qd = Qd/Sb; % p.u
U2_min = 0.95^2;
U2_max = 1.05^2;
%% Compensator
% Location(1)|Max(2)|Min(3)|Step(4)
ComCap = [
5 0.2 0 0.05;
10 0.2 0 0.05;
13 0.2 0 0.05;
17 0.2 0 0.05;
20 0.2 0 0.05;
23 0.2 0 0.05;
30 0.2 0 0.05;
];
v = 2; % Step number for linearization
N_ComCap = size(ComCap,1); % Number of compensator
Ind_ComCap = ComCap(:,1);
S = ComCap(:,4);
%% SVG % Mvar
% Location(1)|Max(2)|Min(3)
SVG = [
4 0.1 0;
9 0.1 0;
14 0.1 0;
];
Ind_SVG = SVG(:,1);
SVG(:,2:3) = SVG(:,2:3)/Sb; % SVG p.u
%% Heat Node
% No(1)|Hd(2)|Pr_SR_min(3)|tao_S_max(4)|tao_S_min(5)|tao_R_max(6)|tao_R_min(7)|mass flow(8)
heatnode = [ %kW %par %℃
1 0 50000 120 90 80 60 0;
2 0 50000 120 90 80 60 0;
3 0 50000 120 90 80 60 0;
4 0 50000 120 90 80 60 0;
5 250 50000 120 90 80 60 2;
6 250 50000 120 90 80 60 2;
7 250 50000 120 90 80 60 2;
8 500 50000 120 90 80 60 4;
];
N_bus2 = size(heatnode,1);
H_ratio = heatnode(:,2)/sum(heatnode(:,2));
H_hd0 = [1250*ones(1,4), 1150*ones(1,4), 1000*ones(1,4), 800*ones(1,4), 1150*ones(1,4), 1250*ones(1,4)]; % kW
H_Hd = H_ratio * H_hd0;
Nd_Hd = find(heatnode(:,2)>0);
m_Hd = heatnode(Nd_Hd,8); % Mass flow ratio of heat load
tao_NS_max = heatnode(:,4);
tao_NS_min = heatnode(:,5);
tao_NR_max = heatnode(:,6);
tao_NR_min = heatnode(:,7);
%% Power Gen
Ind_gen = [2 7 19 26];
Wg1 = [6.88 7.08 7.20 7.16 6.96 6.52 6.44 5.98 5.72 5.54 5.36 5.12 ...
4.64 4.56 4.60 4.64 4.52 4.52 4.92 5.40 5.96 6.56 6.68 6.72]-4.2;% Wind Gen #1(MW) MW 3MW
Wg2 = [16.6 16.4 16.5 16.6 16.8 11.7 11.3 11.3 12.3 13.5 14.9 16.4 17.2 17.7 18 17.9 17.4 ...
16.3 16.1 16.2 16.6 16.8 16.9 16.8]/40;% Wind Gen #2(MW) 0.6 MW
Wg3 = Wg2;
Wg4 = Wg2;
Wg1 = Wg1/Sb; % p.u
Wg2 = Wg2/Sb;
Wg3 = Wg3/Sb;
Wg4 = Wg4/Sb;
Wg = [Wg1;Wg2;Wg3;Wg4];
%% Heat Gen
% Location(1)|Hg_max(2)|Hg_min(3)|C_A(4)|C_B(5)|C_(6)|Mass flow(7) %
heatgen = [% kW % kg/s
2 2500 0 0.05 20 0 10
];
N_gen = size(heatgen,1);
Nd_HS = heatgen(:,1); % Node of heat station
m_HS = heatgen(:,7);
Hg_min = heatgen(:,3);
Hg_max = heatgen(:,2);
%% CAES Hub
yita_comp = [0.80, 0.75];
yita_turb = [0.86, 0.86];
beta_comp = [11.6,8.15];
pi_turb = [8.9,8.9];
Pcomp_min = zeros(Nc,1);
Pcomp_max = 500*ones(Nc,1); %kW
Pturb_min = zeros(Ne,1);
Pturb_max = 1000*ones(Ne,1); %kW
Vst = 2000; % m^3
k = 1.4; % adiabatic exponent
Rg = 0.297; % KJ/(kg.K)
cp_a = 1.007; % KJ/(kg.K) 25℃
cp_w = 4.2; % KJ/(kg.K) 25℃
cp_s = 2.5; % KJ/(kg.K) 25℃
tao_am = 15; % ambient temperature
tao_K = 273.15;
tao_am = tao_am + tao_K;
tao_str = 40;
tao_str = tao_str + tao_K;
tao_salt_min = 60 + tao_K;
tao_salt_max = 320 + tao_K;
pr_am = 0.101*1e3; % Kpa ambient pressure
pr_st_min = 8.4*1e3; % Kpa
pr_st_max = 9.0*1e3; % Kpa
qm_comp_min = 0;
qm_comp_max = 2.306/3.6; % kg/s 1MW CAES
qm_turb_min = 0;
qm_turb_max = 8.869/3.6; % kg/s 1MW CAES
H_str_min = 0.2*1e3; %kW
H_str_max = 3.0*1e3; %kW
pr_comp_in1 = pr_am*ones(1,NT); % Fix pressure
pr_comp_out1 = beta_comp(1)*pr_comp_in1;
pr_comp_in2 = pr_comp_out1;
pr_comp_out2 = beta_comp(2)*pr_comp_in2;
y_comp1 = (beta_comp(1))^((k-1)/k);
y_comp2 = (beta_comp(2))^((k-1)/k);
pr_turb_in1 = pr_st_min*ones(1,NT);
pr_turb_out1 = pr_turb_in1/pi_turb(1);
pr_turb_in2 = pr_turb_out1;
pr_turb_out2 = pr_turb_in2/pi_turb(2);
y_turb1 = (pi_turb(1))^(-(k-1)/k);
y_turb2 = (pi_turb(2))^(-(k-1)/k);
tao_comp_in1 = tao_am*ones(1,NT); % Fix pressure
tao_comp_in2 = (40 + tao_K)*ones(1,NT);
tao_comp_out1 = tao_comp_in1/yita_comp(1).*(y_comp1-1+yita_comp(1));
tao_comp_out2 = tao_comp_in2/yita_comp(2).*(y_comp2-1+yita_comp(2));
tao_cold_s_in1 = tao_comp_out1;
tao_cold_s_out1 = 90 + tao_K ; % Fix salt heat exchanger output temperature 90℃
tao_cold_w_in1 = tao_cold_s_out1;
tao_cold_w_out1 = 40 + tao_K ; % water heat exchanger output temperature 40℃
tao_cold_s_in2 = tao_comp_out2;
tao_cold_s_out2 = 90 + tao_K;
tao_cold_w_in2 = tao_cold_s_out2;
tao_cold_w_out2 = 40 + tao_K ;
tao_turb_in1 = (280 + tao_K)*ones(1,NT);
tao_turb_in2 = (280 + tao_K)*ones(1,NT);
tao_turb_out1 = tao_turb_in1*yita_turb(1).*(y_turb1-1+1/yita_turb(1));
tao_turb_out2 = tao_turb_in2*yita_turb(2).*(y_turb2-1+1/yita_turb(2));
tao_heat_in1 = tao_str;
tao_heat_in2 = tao_turb_out1;
tao_heat_out1 = tao_turb_in1;
tao_heat_out2 = tao_turb_in2;
CAES_ind = 2;
%% Power Line
% No.(1)|From bus(2)|To bus(3)|r(4)|x(5)|P_line_max(6)|P_line_min(7) %
branch = [
1 1 2 0.0922 0.0470 9.9 0;
2 2 3 0.4930 0.2512 9.9 0;
3 3 4 0.3661 0.1864 9.9 0;
4 4 5 0.3811 0.1941 9.9 0;
5 5 6 0.8190 0.7070 9.9 0;
6 6 7 0.1872 0.6188 9.9 0;
7 7 8 0.7115 0.2351 9.9 0;
8 8 9 1.0299 0.7400 9.9 0;
9 9 10 1.0440 0.7400 9.9 0;
10 10 11 0.1967 0.0651 9.9 0;
11 11 12 0.3744 0.1298 9.9 0;
12 12 13 1.4680 1.1549 9.9 0;
13 13 14 0.5416 0.7129 9.9 0;
14 14 15 0.5909 0.5260 9.9 0;
15 15 16 0.7462 0.5449 9.9 0;
16 16 17 1.2889 1.7210 9.9 0;
17 17 18 0.7320 0.5739 9.9 0;
18 2 19 0.1640 0.1565 9.9 0;
19 19 20 1.5042 1.3555 9.9 0;
20 20 21 0.4095 0.4784 9.9 0;
21 21 22 0.7089 0.9373 9.9 0;
22 3 23 0.4512 0.3084 9.9 0;
23 23 24 0.8980 0.7091 9.9 0;
24 24 25 0.8959 0.7071 9.9 0;
25 6 26 0.2031 0.1034 9.9 0;
26 26 27 0.2842 0.1447 9.9 0;
27 27 28 1.0589 0.9338 9.9 0;
28 28 29 0.8043 0.7006 9.9 0;
29 29 30 0.5074 0.2585 9.9 0;
30 30 31 0.9745 0.9629 9.9 0;
31 31 32 0.3105 0.3619 9.9 0;
32 32 33 0.3411 0.5302 9.9 0;
];
N_line = size(branch,1);
line_i = branch(:,2);
line_j = branch(:,3);
r = branch(:,4)/Zb;
x = branch(:,5)/Zb;
Pmax = branch(:,6)/Sb;
Pmin = branch(:,7)/Sb;
%% OLTC
% Line No.(1)|K_max(2)|K_min(3)|K_Step(4)|%
OLTC = [
1 1.05 0.95 0.01;
18 1.05 0.95 0.01;
22 1.05 0.95 0.01;
25 1.05 0.95 0.01;
];
t_OLTC = 0.95:0.01:1.05; % available tap value
T_OLTC = repmat(t_OLTC',1,NT);
n_OLTC= length(t_OLTC); % num of total tap value
N_OLTC = size(OLTC,1);% num of OLTC
Ind_OLTC = OLTC(:,1);
Ind_subline = zeros(N_line,2); % Index of Children line of power netwrok
for i = 1: N_line
temp = find(line_i == line_j(i));
if ~isempty(temp)
Ind_subline(i,1:length(temp)) = temp;
end
end
Pg_min = zeros(N_bus1,NT);
Pg_max = zeros(N_bus1,NT);
%% Pipe
% No.(1)|From node(2)|To node(3)|L(4)|u_p(5)|u_T(6)|ms_max(7)|ms_min(8)|mr_max(9)|mr_min(10)
pipe = [
1 1 2 1000 0.04 0.5*1e-3 1e6 0 10 10;
2 2 3 1000 0.04 0.5*1e-3 1e6 0 8 8;
3 3 4 1000 0.04 0.5*1e-3 1e6 0 6 6;
4 2 5 1000 0.04 0.5*1e-3 1e6 0 2 2;
5 3 6 1000 0.04 0.5*1e-3 1e6 0 2 2;
6 4 7 1000 0.04 0.5*1e-3 1e6 0 2 2;
7 4 8 1000 0.04 0.5*1e-3 1e6 0 4 4;
];
N_pipe = size(pipe,1);
pipe_i = pipe(:,2);
pipe_j = pipe(:,3);
L_pipe = pipe(:,4);
% miu_pipe = pipe(:,5);
lamada_pipe = pipe(:,6);
m_pipe_max = pipe(:,7);
m_pipe_min = pipe(:,8);
ms_pipe = pipe(:,9);
mr_pipe = pipe(:,10);
% Index
S_pipe_F = zeros(N_bus2,2);
S_pipe_T = zeros(N_bus2,2);
%% Variables
% % PDN
P = sdpvar(N_line,NT,'full'); % active power on each line
Q = sdpvar(N_line,NT,'full'); % reactive power on each line
Psub = sdpvar(N_line,NT,'full'); %
Qsub = sdpvar(N_line,NT,'full'); %
I2 = sdpvar(N_line,NT,'full'); % square of line current amplititude
U2 = sdpvar(N_bus1,NT,'full'); % square of bus voltage amplititude
Pg = sdpvar(N_bus1,NT,'full'); % Injected generator active power to each bus
% Qg = sdpvar(N_bus1,NT,'full'); % injected generator reactice power to each bus
Qc = sdpvar(N_bus1,NT,'full'); % SVG
Pgrid = sdpvar(1,NT); % add 2016/06/15 power bought from tranmission network
Qgrid = sdpvar(1,NT);
% % DHN
tao_PS_F = sdpvar(N_pipe,NT,'full'); %'From' side temperature of supply pipe
tao_PS_T = sdpvar(N_pipe,NT,'full'); %'To' side temperature of supply pipe
tao_PR_F = sdpvar(N_pipe,NT,'full'); %'From' side temperature of return pipe
tao_PR_T = sdpvar(N_pipe,NT,'full'); %'To' side temperature of return pipe
tao_NS = sdpvar(N_bus2,NT,'full'); % Node temperature of supply network;
tao_NR = sdpvar(N_bus2,NT,'full'); % Node temperature of return network;
Hg_HP = sdpvar(N_bus2,NT,'full'); % Heat power of heat pump equipped with CAES
% % CAES
on_comp = binvar(1,NT); % on/off of comp.
on_turb = binvar(1,NT); % on/off of turb.
Pcomp1 = sdpvar(1,NT); % power cons. of comp1.
Pcomp2 = sdpvar(1,NT);
Pturb1= sdpvar(1,NT);
Pturb2= sdpvar(1,NT);
Pcaes_d = sdpvar(1,NT);
Pcaes_g = sdpvar(1,NT);
pr_st = sdpvar(1,NT); % 储气罐压强
pr_st0 = sdpvar(1,1);
qm_comp = sdpvar(1,NT); %
qm_turb = sdpvar(1,NT);
y1 = sdpvar(1,NT);% 线性化储气室压强约束
y2 = sdpvar(1,NT);
h1 = sdpvar(1,NT);% 线性化储热系统SOC
h2 = sdpvar(1,NT);
HM = 1e7; % big M
H_coll_s1 = sdpvar(1,NT); % collected heat by salt
H_coll_s2 = sdpvar(1,NT);
H_cons1 = sdpvar(1,NT);
H_cons2 = sdpvar(1,NT);
H_coll_sum = sdpvar(1,NT);
H_cons_sum = sdpvar(1,NT);
H_str = sdpvar(1,NT); % 储热罐中存贮的热量
H_str0 = sdpvar(1,1);
Hg_CAES = sdpvar(1,NT); % 蓄热环节可供热负荷
for i = 1:N_ComCap %% 线性化变量
xd{i} = binvar(v+1,NT);
delta{i} = sdpvar(v+1,NT);
end
for i = 1:N_OLTC
rd{i} = binvar(n_OLTC,NT);
h{i} = sdpvar(n_OLTC,NT);
end
%% Constraints
% % CAES
F_turb = []; % 每级功率定义
F_comp = []; % 每级功率定义
F_oper = []; % 运行约束
F_power = []; % 功率平衡约束
F_airstr = []; % 储气罐压强动态约束
F_cold = [];
F_heat = [];
F_heatstr = [];
F_comp = [F_comp, Pcomp1 == 1/yita_comp(1)*k/(k-1)*Rg*qm_comp.*tao_comp_in1*(y_comp1-1)];
F_comp = [F_comp, Pcomp2 == 1/yita_comp(2)*k/(k-1)*Rg*qm_comp.*tao_comp_in2*(y_comp2-1)];
F_comp = [F_comp, Pcomp_min(1)*on_comp <= Pcomp1 <= Pcomp_max(1)*on_comp ];% 每级消耗的功率约束
F_comp = [F_comp, Pcomp_min(2)*on_comp <= Pcomp2 <= Pcomp_max(2)*on_comp ];
F_comp = [F_comp, Pcaes_d == Pcomp1 + Pcomp2];% 总功率定义
F_turb = [F_turb, Pturb1 == yita_turb(1)*k/(k-1)*Rg*qm_turb.*tao_turb_in1*(1-y_turb1)];
F_turb = [F_turb, Pturb2 == yita_turb(2)*k/(k-1)*Rg*qm_turb.*tao_turb_in2*(1-y_turb2)];
F_turb = [F_turb, Pturb_min(1)*on_turb <= Pturb1 <= Pturb_max(1)*on_turb];% 每级发出功率约束
F_turb = [F_turb, Pturb_min(2)*on_turb <= Pturb2 <= Pturb_max(2)*on_turb];
F_turb = [F_turb, Pcaes_g == Pturb1 + Pturb2];
F_oper = [F_oper, 0 <= on_comp + on_turb <= 1];%充放电不能同时进行
F_oper = [F_oper, qm_comp_min*on_comp <= qm_comp <= qm_comp_max*on_comp];%质量流量非否约束
F_oper = [F_oper, qm_turb_min*on_turb <= qm_turb <= qm_turb_max*on_turb];
F_airstr = [F_airstr, pr_st(1) == pr_st0 + 1/Vst * Rg * tao_str * 3600*(y1(1)- y2(1))];
F_airstr = [F_airstr, pr_st(1,2:NT) == pr_st(1,1:NT-1) + 1/Vst * Rg * tao_str * 3600*(y1(2:NT)- y2(2:NT))];
F_airstr = [F_airstr, pr_st(1,NT) == pr_st0]; % add 2016/06/15
F_airstr = [F_airstr, qm_comp_min*on_comp <= y1 <= qm_comp_max*on_comp];
F_airstr = [F_airstr, qm_turb_min*on_turb <= y2 <= qm_turb_max*on_turb];
F_airstr = [F_airstr, qm_comp_min*(1-on_comp) <= qm_comp - y1 <= qm_comp_max*(1-on_comp)];
F_airstr = [F_airstr, qm_turb_min*(1-on_turb) <= qm_turb - y2 <= qm_turb_max*(1-on_turb)];
F_airstr = [F_airstr, pr_st_min <= pr_st <= pr_st_max];
F_airstr = [F_airstr, pr_st_min <= pr_st0 <= pr_st_max]; % add 2016/06/15
F_cold = [F_cold, H_coll_s1 == cp_a*qm_comp.*(tao_cold_s_in1 - tao_cold_s_out1)];%% 回热系统热量约束% 冷却环节
F_cold = [F_cold, H_coll_s2 == cp_a*qm_comp.*(tao_cold_s_in2 - tao_cold_s_out2)];% 第1,2级导热油回收的热量
F_cold = [F_cold, H_coll_sum == H_coll_s1 + H_coll_s2]; % 只计及导热油收集的热量% 回收的总热量
F_heat = [F_heat, H_cons1 == cp_a*qm_turb.*(tao_heat_out1 - tao_heat_in1)];% 第1-2级消耗的热量
F_heat = [F_heat, H_cons2 == cp_a*qm_turb.*(tao_heat_out2 - tao_heat_in2)];
F_heat = [F_heat, H_cons_sum == H_cons1 + H_cons2]; % 加热环节消耗的总热量
F_heatstr = [F_heatstr, H_str(1,1) == H_str0 + h1(1,1) - h2(1,1) - Hg_CAES(1,1)];% 回热系统SOC% 高温储热罐中存贮的热量
F_heatstr = [F_heatstr, H_str(1,2:NT) == H_str(1,1:NT-1) + h1(1,2:NT) - h2(1,2:NT) - Hg_CAES(1,2:NT)];
F_heatstr = [F_heatstr, -HM*on_comp <= h1 <= HM*on_comp];
F_heatstr = [F_heatstr, -HM*on_turb <= h2 <= HM*on_turb];
F_heatstr = [F_heatstr, -HM*(1-on_comp) <= H_coll_sum - h1 <= HM*(1-on_comp)];
F_heatstr = [F_heatstr, -HM*(1-on_turb) <= H_cons_sum - h2 <= HM*(1-on_turb)];
F_heatstr = [F_heatstr, H_str_min <= H_str <= H_str_max];% % Box 约束
F_heatstr = [F_heatstr, H_str_min <= H_str0 <= H_str_max];
F_heatstr = [F_heatstr, H_str(1,NT) == H_str0]; % add 2016/06/15
%% PDN 约束
F_P = [];
F_Q = [];
F_U = [];
for t = 1:NT
for i = 1:N_bus1 % 设置未放置发电机的母线节点的注入(P,Q)功率及a,b,c为 0
if isempty(find(Ind_gen == i))
F_P = [F_P, Pg(i,t) == 0];
% F_Q = [F_Q, Qg(i,t) == 0];
else
Pg_max(i,:) = Wg(find(Ind_gen == i),:);
end
% 判断是否装有SVG
if isempty(find(Ind_SVG ==i)) % 未安装SVG
F_Q = [F_Q, Qc(i,t) == 0];
else % 安装SVG
temp = find(Ind_SVG == i); % 索引
F_Q = [F_Q, SVG(temp,3) <= Qc(i,t) <= SVG(temp,2)];
end
end
end
% 线路子线路潮流
for t = 1:NT
for i = 1:N_line
num_temp = size(find(Ind_subline(i,:) == 0),2);
if num_temp == 1
F_P = [F_P, Psub(i,t) == P(Ind_subline(i,1),t)];
F_Q = [F_Q, Qsub(i,t) == Q(Ind_subline(i,1),t)];
elseif num_temp == 2
F_P = [F_P, Psub(i,t) == 0];
F_Q = [F_Q, Qsub(i,t) == 0];
else
F_P = [F_P, Psub(i,t) == P(Ind_subline(i,1),t) + P(Ind_subline(i,2),t)];
F_Q = [F_Q, Qsub(i,t) == Q(Ind_subline(i,1),t) + Q(Ind_subline(i,2),t)];
end
end
end
OTLC_count = zeros(1,NT);
ComCap_count = zeros(1,NT);
M = 1000;
F_P = [F_P, P(1,:) == Pgrid(1,:)]; %%
% F_Q = [F_Q, Q(1,:) == Qgrid(1,:)]; %%
F_Q = [F_Q, Q(1,:) == 0]; %%
F_U = [F_U, U2(1,:) == 1.05^2];
Vs1 = 1.05^2 * ones(1,NT);
yite = 0.8;
for t = 1:NT
F_P = [F_P, I2(:,t) > 0];
for i = 1:N_line
if line_j(i) == CAES_ind
% F_P = [F_P, P(i,t) + Pg(line_j(i),t) + Pcaes_g(t)/1e3/Sb == Psub(i,t) + Pd(line_j(i),t) + Pcaes_d(t)/1e3/Sb];
% F_P = [F_P, P(i,t) + Pg(line_j(i),t) + Pcaes_g(t)/1e3/Sb -r(i)*I2(i,t) == Psub(i,t) + Pd(line_j(i),t) + Pcaes_d(t)/1e3/Sb];% 2016/09/17 add the power loss
F_P = [F_P, P(i,t) + Pg(line_j(i),t) + Pcaes_g(t)/1e3/Sb == Psub(i,t) + Pd(line_j(i),t) + Pcaes_d(t)/1e3/Sb + (Hg_HP(CAES_ind,:))/1e3/Sb/yite];
else
F_P = [F_P, P(i,t) + Pg(line_j(i),t) == Psub(i,t) + Pd(line_j(i),t)];
end
% 判断是否装有并联补偿电容
if ~isempty(find(Ind_ComCap == line_j(i))) % 安装补偿电容
ComCap_count(t) = ComCap_count(t) + 1;
% F_Q = [F_Q, Q(i,t) + Qg(line_j(i),t) + 0.5*(U2(line_j(i),t)*ComCap(ComCap_count(t),3) + S(ComCap_count(t))*(2^0*delta{ComCap_count(t)}(1,t) + ...
% 2^1*delta{ComCap_count(t)}(2,t)+ 2^2*delta{ComCap_count(t)}(2,t)))+ Qc(line_j(i),t) - x(i)*I2(i,t) == Qsub(i,t) + Qd(line_j(i),t)];
% F_Q = [F_Q, Q(i,t) + Qg(line_j(i),t) + 0.5*(U2(line_j(i),t)*ComCap(ComCap_count(t),3) + S(ComCap_count(t))*(2^0*delta{ComCap_count(t)}(1,t) + ...
% 2^1*delta{ComCap_count(t)}(2,t) + 2^2*delta{ComCap_count(t)}(2,t)))+ Qc(line_j(i),t) == Qsub(i,t) + Qd(line_j(i),t)];
F_Q = [F_Q, Q(i,t) + 0.5*(U2(line_j(i),t)*ComCap(ComCap_count(t),3) + S(ComCap_count(t))*(2^0*delta{ComCap_count(t)}(1,t) + ...
2^1*delta{ComCap_count(t)}(2,t) + 2^2*delta{ComCap_count(t)}(2,t)))+ Qc(line_j(i),t) == Qsub(i,t) + Qd(line_j(i),t)]; % 2016/06/15 去掉无功Qg
% F_Q = [F_Q, Q(i,t) + 0.5*(U2(line_j(i),t)*ComCap(ComCap_count(t),3) + S(ComCap_count(t))*(2^0*delta{ComCap_count(t)}(1,t) + ...
% 2^1*delta{ComCap_count(t)}(2,t)+ 2^2*delta{ComCap_count(t)}(2,t)))+ Qc(line_j(i),t) - x(i)*I2(i,t) == Qsub(i,t) + Qd(line_j(i),t)];% 2016/09/17 add the power loss
for m = 1:v+1
F_U = [F_U, U2(line_j(i),t) - M*(1-xd{ComCap_count(t)}(m,t)) <= delta{ComCap_count(t)}(m,t) <= U2(line_j(i),t) + M*(1-xd{ComCap_count(t)}(m,t))];
F_U = [F_U, -M*xd{ComCap_count(t)}(m,t) <= delta{ComCap_count(t)}(m,t) <= M*xd{ComCap_count(t)}(m,t)];
end
F_U = [F_U, 0 <= 2^0*xd{ComCap_count(t)}(1,t)+ 2^1*xd{ComCap_count(t)}(2,t) + 2^2*xd{ComCap_count(t)}(3,t) <= (ComCap(ComCap_count(t),2) - ...
ComCap(ComCap_count(t),3))/ComCap(ComCap_count(t),4)];
else % 未安装补偿电容)
% F_Q = [F_Q, Q(i,t) + Qg(line_j(i),t) + Qc(line_j(i),t) - x(i)*I2(i,t) == Qsub(i,t) + Qd(line_j(i),t)];
% F_Q = [F_Q, Q(i,t) + Qg(line_j(i),t) + Qc(line_j(i),t) == Qsub(i,t) + Qd(line_j(i),t)];
F_Q = [F_Q, Q(i,t) + Qc(line_j(i),t) == Qsub(i,t) + Qd(line_j(i),t)];% 2016/06/15 去掉无功Qg
end
if ~isempty(find(Ind_OLTC == i)) % 含OTLC的支路
OTLC_count(t) = OTLC_count(t)+1;
F_U = [F_U, sum(h{OTLC_count(t)}(:,t)./T_OLTC(:,t).^2,1) == U2(line_i(i),t)-(r(i)*P(i,t)+x(i)*Q(i,t))/Vs1(1,t)];
for k = 1:n_OLTC
F_U = [F_U, -M*(1-rd{OTLC_count(t)}(k,t)) + U2(line_j(i),t) <= h{OTLC_count(t)}(k,t) <= U2(line_j(i),t) + M*(1-rd{OTLC_count(t)}(k,t))];
F_U = [F_U, -M*rd{OTLC_count(t)}(k,t) <= h{OTLC_count(t)}(k,t)<= M*rd{OTLC_count(t)}(k,t)];
end
F_U = [F_U,sum(rd{OTLC_count(t)}(:,t),1) == 1];
else % 不含OTLC的支路
F_U = [F_U, U2(line_j(i),t)== U2(line_i(i),t)-(r(i)*P(i,t)+x(i)*Q(i,t))/Vs1(1,t)];
end
% 线路潮流约束
F_P = [F_P, Pmin(i) <= P(i,t) <= Pmax(i)];
% F_Q = [F_Q, Q(i,t) >= 0]; % add 2016/06/18
end
for i = 1:N_bus1
F_P = [F_P,Pg_min(i,t) <= Pg(i,t) <= Pg_max(i,t)];
F_U = [F_U, U2_min <= U2(i,t) <= U2_max];
end
end
F_P = [F_P, Pgrid >= 0];
% F_Q = [F_Q, Qgrid >= 0];
% 热力站
F_H = [];
Count_HS = 0;
Count_Hd = 0;
for j = 1:N_bus2
if ~isempty(find(Nd_HS == j)) % 若该节点设置供热机组
Count_HS = Count_HS + 1;
F_H = [F_H, Hg_HP(j,:) + Hg_CAES(1,:) == cp_w*m_HS(Count_HS)*(tao_NS(j,:) - tao_NR(j,:))];% add heat power generated by CAES
% F_H = [F_H, Hg_HP(j,:) == cp_w*m_HS(Count_HS)*(tao_NS(j,:) - tao_NR(j,:))];% add heat power generated by CAES
F_H = [F_H, Hg_min <= Hg_HP(j,:) <= Hg_max];
elseif ~isempty(find(Nd_Hd == j)) % 若该节点设置供热负荷
Count_Hd = Count_Hd + 1;
F_H = [F_H, Hg_HP(j,:) == zeros(1,NT)];
F_H = [F_H, cp_w*m_Hd(Count_Hd,:)*(tao_NS(j,:) - tao_NR(j,:)) == H_Hd(j,:)];
else % 其他节点
F_H = [F_H, Hg_HP(j,:) == zeros(1,NT)];
end
F_H = [F_H, tao_NS_min(j) <= tao_NS(j,:) <= tao_NS_max(j)];
F_H = [F_H, tao_NR_min(j) <= tao_NR(j,:)<= tao_NR_max(j)];
end
F_H = [F_H, 0 <= Hg_CAES <= 0.2*H_str]; %
% 供热网络
F_PH = [];
for i = 1:N_bus2
temp1 = find(pipe_i == i); % 管道首节点为i
temp2 = find(pipe_j == i); % 管道末节点为i
S_pipe_F(i,1:length(temp1)) = temp1; % 首节点为i的管道集合
S_pipe_T(i,1:length(temp2)) = temp2; % 末节点为i的管道集合
end
for i = 1:N_bus2
% 供水管道温度节点混合
num_temp1 = size(find(S_pipe_T(i,:) == 0),2);
if num_temp1 == 1 % 以节点i末端的管道数为1
b = S_pipe_T(i,1); % 管道编号
F_PH = [F_PH, ms_pipe(b)* tao_PS_T(b,:) == ms_pipe(b) * tao_NS(i,:)];
F_PH = [F_PH, tao_PR_F(b,:) == tao_NR(i,:)];
elseif num_temp1 == 0 % 以节点i末端的管道数为2
b = S_pipe_T(i,:); % 管道编号
F_PH = [F_PH, ms_pipe(b(1))* tao_PS_T(b(1),:) + ms_pipe(b(2))* tao_PS_T(b(2),:) == (ms_pipe(b(1))+ms_pipe(b(2))) * tao_NS(i,:)];
F_PH = [F_PH, tao_PR_F(b(1),:) == tao_NR(i,:)];
F_PH = [F_PH, tao_PR_F(b(2),:) == tao_NR(i,:)];
else
% % 以节点i末端的管道数为0 首节点
end
% 回水管道温度节点混合
num_temp2 = size(find(S_pipe_F(i,:) == 0),2);
if num_temp2 == 1 % 以节点i首端的管道数为1
b = S_pipe_F(i,1); % 管道编号
F_PH = [F_PH, mr_pipe(b)* tao_PR_T(b,:) == mr_pipe(b) * tao_NR(i,:)];
F_PH = [F_PH, tao_PS_F(b,:) == tao_NS(i,:)];
elseif num_temp2 == 0 % 以节点i首端的管道数为2
b = S_pipe_F(i,:); % 管道编号
F_PH = [F_PH, mr_pipe(b(1))* tao_PR_T(b(1),:) + mr_pipe(b(2))* tao_PR_T(b(2),:) == (mr_pipe(b(1))+mr_pipe(b(2))) * tao_NR(i,:)];
F_PH = [F_PH, tao_PS_F(b(1),:) == tao_NS(i,:)];
F_PH = [F_PH, tao_PS_F(b(2),:) == tao_NS(i,:)];
else
% 以节点i末端的管道数为0 末节点
end
end
for i = 1:N_pipe
% 温度变化方程
F_PH = [F_PH, tao_PS_T(i,:) == (tao_PS_F(i,:) - (tao_am-tao_K))*exp(-lamada_pipe(i)*L_pipe(i)/(cp_w*ms_pipe(i))) + (tao_am-tao_K)];
F_PH = [F_PH, tao_PR_T(i,:) == (tao_PR_F(i,:) - (tao_am-tao_K))*exp(-lamada_pipe(i)*L_pipe(i)/(cp_w*mr_pipe(i))) + (tao_am-tao_K)];
end
%% 目标函数
Obj = 0;
% 发电成本最小
% C_grid = 1500; % 0.15$/(kW.h) -> 1500$/(p.u)
C_grid = [0.05*ones(1,8) 0.10*ones(1,6) 0.08*ones(1,8) 0.05*ones(1,2)];
% C_grid = [0.05*ones(1,8) 1.6*ones(1,6) 1.4*ones(1,8) 0.05*ones(1,2)];
C_grid = C_grid * 1e4;
% C_wind = 2500; % 0.25$/(kW.h) -> 2500$/(p.u)
Obj1 = C_grid*Pgrid'; % PDN 购电成本
Obj2 = C_grid*[(Hg_HP(CAES_ind,:))/1e3/Sb/yite]';
% Obj2 = 0; % DHN 所需电量由PDN向电网购买
Obj = Obj1 + Obj2;
FP = [F_P,F_Q,F_U];
FH = [F_H,F_PH];
FHub = [F_comp,F_turb,F_power,F_oper,F_airstr,F_heat, F_cold ,F_heatstr];
F = [FP,FH,FHub];
opt= sdpsettings('solver','cplex');
sol = optimize(F,Obj1,opt)
% checkset(F)
if sol.problem == 0
disp('successed!')
C_PDN = value(Obj1)
C_DHN = value(Obj2)
C_MEI = value(Obj)
tte1 = 11; % peak time
tth1 = 5;
tte2 = 5; % off-peak time
tth2 = 15;
nne = 2; % 绘图电网节点编号
lineno = 7; % 绘图电网线路编号
pipeno = 8;
% figure(1)
% plot(1:NT,Pd0,'-b')
% hold on
% plot(1:NT,Qd0,'-r')
% plot(1:NT,Sb*sum(Wg,1),'-g')
% legend('P_d','Q_d','W_g')
% xlabel('Time (h)')
% ylabel('Power (MW/Mvar)')
% figure(2)
% plot(1:NT,Pd0,'-r')
% hold on
% plot(1:NT,Qd0,'-b')
% xlabel('Time (h)')
% ylabel('Power load (MW/Mvar)')
% legend('P_d','Q_d')
% figure(3)
% plot(1:N_bus1,Pd_ratio,'-r')
% hold on
% plot(1:N_bus1,Qd_ratio,'-b')
% xlabel('Bus No.')
% ylabel('ratio')
% legend('P_d','Q_d')
% figure(4)
% plot(1:NT,Sb*Wg1,'-r')
% hold on
% plot(1:NT,Sb*Wg2,'-b')
% xlabel('Time (h)')
% ylabel('W_g(MW)')
% legend('Wind Gen #1', 'Wind Gen #2-4')
% figure(5)
% plot(1:NT,Pd0,'-ko')
% hold on
% plot(1:NT,value(Pcaes_d)/1e3,'-.ks')
% plot(1:NT,Sb*value(Pg(2,:)),'-bo')
% plot(1:NT,Sb*value(Pg(7,:)),'-.bs')
% plot(1:NT,Sb*value(Pg(19,:)),'-ro')
% plot(1:NT,Sb*value(Pg(26,:)),'-.gs')
% plot(1:NT,Sb*value(Pgrid),'-go')
% plot(1:NT,value(Pcaes_g)/1e3,'-.rp')
% legend('P_d','P^{CAES}_d','W^g_1','W^g_2','W^g_3','W^g_4','\theta','P^{CAES}_g')
% xlabel('Time (h)')
% ylabel('Power (MW)')
% figure(6)
% plot(1:NT,-Sb*(value(Pg(2,:))-Wg(1,:)),'-.bo')
% hold on
% plot(1:NT,-Sb*(value(Pg(7,:))-Wg(2,:)),'-.rs')
% plot(1:NT,-Sb*(value(Pg(19,:))-Wg(3,:)),'-bo')
% plot(1:NT,-Sb*(value(Pg(26,:))-Wg(4,:)),'-rs')
% legend('W^c_1','W^c_2','W^c_3','W^c_4')
% xlabel('Time (h)')
% ylabel('Wind (MW)')
figure(7)
plot(1:N_line,Sb*value(P(:,tte1)),'-r')
hold on
plot(1:N_line,Sb*value(Q(:,tte1)),'-b')
plot(1:N_line,Sb*value(P(:,tte2)),'-.k')
plot(1:N_line,Sb*value(Q(:,tte2)),'-.g')
xlabel('Line No.')
% ylabel(['Power flow at time period ', num2str(tte), '(MW/Mvar) '])
ylabel('Power flow (MW/Mvar)')
legend('P_{11}','Q_{11}','P_{5}','Q_{5}')
% legend('P_{line}')
% figure(8)
% plot(1:NT,Sb*value(P(lineno,:)),'-ro')
% hold on
% plot(1:NT,Sb*value(Q(lineno,:)),'-bs')
% xlabel('Time(h)')
% ylabel(['Power flow on line ', num2str(lineno),' (MW/Mvar) '])
% legend('P','Q')
% % legend('P_{line}')
figure(9)
plot(1:N_bus1,sqrt(value(U2(:,tte1))),'-r')
hold on
plot(1:N_bus1,sqrt(value(U2(:,tte2))),'-b')
xlabel('Bus No.')
% ylabel(['Voltage amplititude at time period ',num2str(tte),' (p.u.)'])
ylabel('Voltage amplititude (p.u.)')
legend('U_{11}','U_5')
%
% figure(10)
% plot(1:NT,sqrt(value(U2(nne,:))),'-ro')
% xlabel('Time (h)')
% ylabel(['Voltage amplititude at node ', num2str(nne), ' (p.u.)'])
% figure(11)
% plot(1:N_bus1,Sb*value(Qc(:,tte1)),'-r');
% hold on
% plot(1:N_bus1,Sb*value(Qc(:,tte2)),'-b');
% xlabel('Bus No.')
% ylabel('VSG (MVar)')
% legend('q^g_{11}','q^g_{5}')
% figure(11)
% plot(1:NT,Sb*value(Qc(4,:)),'-ro');
% xlabel('Time (h)')
% ylabel(['VSG output at Node 4 (MVar)'])
%
% tij = zeros(N_OLTC,2);
% for i = 1:N_OLTC
% tij(i,1) = t_OLTC(find(value(rd{i}(:,tte1)) == 1));
% tij(i,2) = t_OLTC(find(value(rd{i}(:,tte2)) == 1));
% end
%
% figure(12)
% plot(1:N_OLTC,tij(:,1),'-ro')
% hold on
% plot(1:N_OLTC,tij(:,2),'-bs')
% xlabel('OLTC (No.)')
% ylabel('OLTC K')
% legend('K_{11}','K_{5}')
% CC = zeros(N_ComCap,2);
% for i = 1:N_ComCap
% CC(i,1) = (2^0*value(xd{i}(1,tte1))+ 2^1*value(xd{i}(2,tte1)) + 2^2*value(xd{i}(3,tte1)))*S(i) + ComCap(i,3);
% CC(i,2) = (2^0*value(xd{i}(1,tte2))+ 2^1*value(xd{i}(2,tte2)) + 2^2*value(xd{i}(3,tte2)))*S(i) + ComCap(i,3);
% end
% figure(13)
% plot(1:N_ComCap,CC(:,1),'-ro')
% hold on
% plot(1:N_ComCap,CC(:,2),'-bs')
% xlabel('Compen (No.)')
% ylabel('C')
% legend('C_{11}','C_{5}')
% ylim([-0.01,0.16])
% figure(14)
% plot(1:N_pipe,value(tao_PS_F(:,tth2)),'-go')
% hold on
% plot(1:N_pipe,value(tao_PS_T(:,tth2)),'-cs')
% plot(1:N_pipe,value(tao_PS_T(:,tth1)),'-bs')
% plot(1:N_pipe,value(tao_PS_F(:,tth1)),'-ro')
% plot(1:N_pipe,value(tao_PR_F(:,tth1)),'-.ro')
% plot(1:N_pipe,value(tao_PR_T(:,tth1)),'-.bs')
% plot(1:N_pipe,value(tao_PR_F(:,tth2)),'-.go')
% plot(1:N_pipe,value(tao_PR_T(:,tth2)),'-.cs')
% xlabel('Pipe No.')
% ylabel('Temperature (^{\circ}C)')
% legend('\tau^{S,in}_{5}','\tau^{S,out}_{5}','\tau^{S,in}_{15}',...
% '\tau^{S,out}_{15}','\tau^{R,in}_{5}','\tau^{R,in}_{5}','\tau^{R,in}_{15}','\tau^{R,in}_{15}')
% figure(15)
% plot(1:N_bus2,value(tao_NS(:,tth1)),'-ro')
% hold on
% plot(1:N_bus2,value(tao_NR(:,tth1)),'-bs')
% plot(1:N_bus2,value(tao_NS(:,tth2)),'-.ro')
% plot(1:N_bus2,value(tao_NR(:,tth2)),'-.bs')
% xlabel('Node No.')
% ylabel('Temperature (^{\circ}C)')
% legend('\tau^{S}_5','\tau^{R}_5','\tau^{S}_{15}','\tau^{R}_{15}')
figure(16)
plot(1:NT,value(Hg_HP(CAES_ind,:))/1e3,'-ro')
hold on
plot(1:NT,H_hd0/1e3,'-.kx')
plot(1:NT,value(Hg_CAES(1,:))/1e3,'-.bp')
xlabel('Time (h)')
ylabel('Heat (MW) ')
legend('H^{hp}','H^d','H^g')
ylim([-0.05,1.8])
% figure(17)
% plot(1:NT,value(tao_NS(4,:)),'-ro')
% hold on
% plot(1:NT,value(tao_NR(4,:)),'-bs')
% xlabel('Time (h)')
% ylabel(['Temperature of node 4 (^{\circ}C) '])
% legend('\tau_{NS}','\tau_{NR}')
%
% figure(18)
% plot(0:NT,[0 value(on_comp)],'-bo')
% hold on
% plot(0:NT,[0 value(on_turb)],'-.rs')
% xlabel('Time (h)')
% legend('compresser','turbine')
% title('on/off of CAES')
% xlim([0-0.1,NT+0.1])
% % ylim([-0.1,1.1])
% figure(19)
% plot(1:NT,[value(Pcaes_d)]/1e3,'-bo')
% hold on
% plot(1:NT,[value(Pcaes_g)]/1e3,'-rs')
% legend('P^{CAES}_d','P^{CAES}_g')
% xlabel('Time (h)')
% ylabel('P (WW)')
% xlim([0-0.1,NT+0.1])
% figure(20)
% plot(1:NT,[value(pr_st)]/1e3,'-bo')
% xlabel('Time (h)')
% ylabel('Pr (Mpa)')
% xlim([0-0.1,NT+0.1])
% figure(20)
% plot(1:NT, Sb*value(Pgrid),'-b')
% hold on
% plot(1:NT, Sb*Wg1,'-c')
% plot(1:NT, Sb*value(Pg(2,:)),'-g')
% plot(1:NT, value(Pcaes_d)/1e3,'-k')
% Cur = Sb*(Wg1-value(Pg(2,:)))-value(Pcaes_d)/1e3;
% Cur(Cur<0) =0;
% % plot(1:NT,Cur,'-r')
% shadedplot(1:NT,Cur,zeros(1,NT),'r');
% % fill(zeros(1,NT),Cur,'-r')
% xlabel('Time (h)')
% ylabel('Power (MW)')
% legend('\theta','W^{g,u}_2','W^g_2','A^c','W^{cur}')
% ylim([-0.5,3.5])
figure(21)
plot(1:NT, value(qm_comp),'-b')
hold on
plot(1:NT, value(qm_turb),'-r')
legend('qm_{comp}','qm_{turb}')
xlim([0-0.1,NT+0.1])
% ylim([0-10,50])
xlabel('Time (h)')
ylabel('qm (kg/s)')
figure(22)
x = 0:NT;
y1 = [0 value(Pcaes_d) - value(Pcaes_g)]/1e3;
y2 = [value(pr_st0),value(pr_st)]/1e3;
[AX,H1,H2] = plotyy(x,y1,x,y2,'bar','plot');
set(AX(1),'XColor','k','YColor','b');
set(AX(2),'XColor','k','YColor','r');
set(AX(1),'Xlim',[0,25]);
set(AX(2),'Xlim',[0,25]);
HH1=get(AX(1),'Ylabel');
set(HH1,'String','P^{g}(MW)');
set(HH1,'color','b');
HH2=get(AX(2),'Ylabel');
set(HH2,'String','Pr (MPa)');
set(HH2,'color','r');
set(H1,'LineStyle','-');
set(H2,'LineStyle','-');
set(H2,'color','r');
legend([H1,H2],{'Charge/Discharge Power(MW)';'State of Charge'});
xlabel('Time(h)');
figure(23)
plot(1:NT, value(H_coll_sum)/1e3,'-.bo');
hold on
plot(1:NT, value(H_cons_sum)/1e3,'-.rs')
xlabel('Time (h)')
ylabel('Heat (MW.h)')
legend('H^{CAES}_g','H^{CAES}_d')
figure(24)
x = 0:NT;
% y1 = [0 value(H_coll_sum) - value(H_cons_sum)]/1e3;
y1 = [0 value(H_coll_sum) - value(H_cons_sum)-value(Hg_CAES(1,:))]/1e3;
y2 = [value(H_str0),value(H_str)]/1e3;
[AX,H1,H2] = plotyy(x,y1,x,y2,'bar','plot');
set(AX(1),'XColor','k','YColor','b');
set(AX(2),'XColor','k','YColor','r');
set(AX(1),'Xlim',[0,25]);
set(AX(2),'Xlim',[0,25]);
HH1=get(AX(1),'Ylabel');
set(HH1,'String','H^{g}(MW)');
set(HH1,'color','b');
HH2=get(AX(2),'Ylabel');
set(HH2,'String','H^{str} (MW.h)');
set(HH2,'color','r');
set(H1,'LineStyle','-');
set(H2,'LineStyle','-');
set(H2,'color','r');
legend([H1,H2],{'Charge/Discharge Power (MW)';'State of Charge'});
xlabel('Time (h)');
% figure(25)
% plot(1:NT,C_grid/1e4,'-b')
% xlabel('Time (h)')
% ylabel('Price ($/(kW.h))')
% ylim([0.0, 0.15])
else
display('Hmm, something went wrong!');
sol.info
yalmiperror(sol.problem)
end