generated from AIKU-Official/aiku-23-2-project-guideline
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathagent.py
281 lines (214 loc) · 10.2 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import numpy as np
import random
import MCTS as mc
from game import GameState
from loss import softmax_cross_entropy_with_logits
import config
import loggers as lg
import time
import torch
import matplotlib.pyplot as plt
# from IPython import display
import pylab as pl
from config import BATCH_SIZE
import torch.multiprocessing as mp
from concurrent.futures import ProcessPoolExecutor
class User():
def __init__(self, name, state_size, action_size):
self.name = name
self.state_size = state_size
self.action_size = action_size
def act(self, state, tau):
#action = input('Enter your chosen action: ')
# if input is e5 -> 4,4
# min = 0,0 (0), max = 8,8 (80)
action_str = str(input('Enter your action: '))
action = (int(action_str[1:]) - 1) * config.BOARD_SIZE + (ord(action_str[0]) - 97)
pi = np.zeros(self.action_size)
pi[action] = 1
value = None
NN_value = None
return (action, pi, value, NN_value)
class Agent():
def __init__(self, name, state_size, action_size, mcts_simulations, cpuct, model, device):
self.name = name
self.state_size = state_size
self.action_size = action_size
self.cpuct = cpuct
self.MCTSsimulations = mcts_simulations
self.model = model
self.device = device
self.mcts = None
self.train_overall_loss = []
self.train_value_loss = []
self.train_policy_loss = []
self.val_overall_loss = []
self.val_value_loss = []
self.val_policy_loss = []
def simulate(self):
lg.logger_mcts.info('ROOT NODE...%s', self.mcts.root.state.id)
self.mcts.root.state.render(lg.logger_mcts)
lg.logger_mcts.info('CURRENT PLAYER...%d', self.mcts.root.state.playerTurn)
##### MOVE THE LEAF NODE
leaf, value, done, breadcrumbs = self.mcts.moveToLeaf()
leaf.state.render(lg.logger_mcts)
##### EVALUATE THE LEAF NODE
value, breadcrumbs = self.evaluateLeaf(leaf, value, done, breadcrumbs)
##### BACKFILL THE VALUE THROUGH THE TREE
self.mcts.backFill(leaf, value, breadcrumbs)
def act(self, state, tau):
if self.mcts == None or state.id not in self.mcts.tree:
self.buildMCTS(state)
else:
self.changeRootMCTS(state)
#### run the simulation
'''for sim in range(self.MCTSsimulations):
lg.logger_mcts.info('***************************')
lg.logger_mcts.info('****** SIMULATION %d ******', sim + 1)
lg.logger_mcts.info('***************************')
self.simulate()'''
self.parallel_simulate()
#### get action values
pi, values = self.getAV(1)
#### pick the action
action, value = self.chooseAction(pi, values, tau)
nextState, _, _ = state.takeAction(action)
NN_value = -self.get_preds(nextState)[0]
lg.logger_mcts.info('ACTION VALUES...%s', pi)
lg.logger_mcts.info('CHOSEN ACTION...%d', action)
lg.logger_mcts.info('MCTS PERCEIVED VALUE...%f', value)
lg.logger_mcts.info('NN PERCEIVED VALUE...%f', NN_value)
return (action, pi, value, NN_value)
def get_preds(self, state):
inputToModel = self.model.convertToModelInput(state)
inputToModel = inputToModel.to(self.device) # GPU로 이동 (필요한 경우)
with torch.no_grad():
value, probs = self.model.predict(inputToModel)
value = value.item() # 텐서에서 스칼라 값 추출
probs = probs.detach().cpu().numpy()[0] # 텐서를 NumPy 배열로 변환
allowedActions = state.allowedActions
mask = np.zeros(self.action_size)
mask[allowedActions] = 1
probs = probs * mask # Masking invalid actions
probs_sum = np.sum(probs)
if probs_sum > 0:
probs = probs / probs_sum
else:
# 모든 확률이 0인 경우, 균등 분포 사용
probs = mask / np.sum(mask)
return value, probs, allowedActions
def evaluateLeaf(self, leaf, value, done, breadcrumbs):
lg.logger_mcts.info('------EVALUATING LEAF------')
if done == 0:
value, probs, allowedActions = self.get_preds(leaf.state)
lg.logger_mcts.info('PREDICTED VALUE FOR %d: %f', leaf.state.playerTurn, value)
probs = probs[allowedActions]
for idx, action in enumerate(allowedActions):
newState, _, _ = leaf.state.takeAction(action)
if newState.id not in self.mcts.tree:
node = mc.Node(newState)
self.mcts.addNode(node)
lg.logger_mcts.info('added node...%s...p = %f', node.id, probs[idx])
else:
node = self.mcts.tree[newState.id]
lg.logger_mcts.info('existing node...%s...', node.id)
newEdge = mc.Edge(leaf, node, probs[idx], action)
leaf.edges.append((action, newEdge))
else:
lg.logger_mcts.info('GAME VALUE FOR %d: %f', leaf.playerTurn, value)
return ((value, breadcrumbs))
def getAV(self, tau):
edges = self.mcts.root.edges
pi = np.zeros(self.action_size, dtype=np.integer)
values = np.zeros(self.action_size, dtype=np.float32)
for action, edge in edges:
pi[action] = pow(edge.stats['N'], 1 / tau)
values[action] = edge.stats['Q']
pi = pi / (np.sum(pi) * 1.0)
return pi, values
def chooseAction(self, pi, values, tau):
if tau == 0:
actions = np.argwhere(pi == max(pi))
action = random.choice(actions)[0]
else:
action_idx = np.random.multinomial(1, pi)
action = np.where(action_idx == 1)[0][0]
value = values[action]
return action, value
def replay(self, ltmemory):
lg.logger_mcts.info('******RETRAINING MODEL******')
for i in range(5):
ltmemory[i]['state'].printBoard()
print(ltmemory[i]['AV'], ltmemory[i]['value'])
for i in range(config.TRAINING_LOOPS):
minibatch = random.sample(ltmemory, min(config.BATCH_SIZE, len(ltmemory)))
training_states = torch.tensor(np.array([
self.model.convertToModelInput(row['state']).numpy()
for row in minibatch
]), dtype=torch.float32, device=self.device)
training_states = training_states.squeeze(1)
# 타겟 값들을 하나의 텐서로 결합
values = torch.tensor([row['value'] for row in minibatch], dtype=torch.float32, device=self.device)
policies = torch.tensor([row['AV'] for row in minibatch], dtype=torch.float32, device=self.device)
print(values)
# values를 (batch_size, 1) 형태로, policies를 (batch_size, action_size) 형태로 만듦
values = values.view(-1, 1)
training_targets = torch.cat([values, policies], dim=1)
print(training_states.shape, training_targets.shape)
fit = self.model.fit(training_states, training_targets, epochs=config.EPOCHS, verbose=1, validation_split=0, batch_size=BATCH_SIZE)
#lg.logger_mcts.info('NEW LOSS %s', fit.history)
#self.train_overall_loss.append(round(fit.history['loss'][config.EPOCHS - 1], 4))
#self.train_value_loss.append(round(fit.history['value_head_loss'][config.EPOCHS - 1], 4))
#self.train_policy_loss.append(round(fit.history['policy_head_loss'][config.EPOCHS - 1], 4))
'''
plt.plot(self.train_overall_loss, 'k')
plt.plot(self.train_value_loss, 'k:')
plt.plot(self.train_policy_loss, 'k--')
plt.legend(['train_overall_loss', 'train_value_loss', 'train_policy_loss'], loc='lower left')
# display.clear_output(wait=True)
# display.display(pl.gcf())
pl.gcf().clear()
time.sleep(1.0)
'''
print('\n')
# self.model.printWeightAverages()
def predict(self, inputToModel):
preds = self.model.predict(inputToModel)
return preds
def buildMCTS(self, state):
lg.logger_mcts.info('****** BUILDING NEW MCTS TREE FOR AGENT %s ******', self.name)
self.root = mc.Node(state)
self.mcts = mc.MCTS(self.root, self.cpuct)
def changeRootMCTS(self, state):
lg.logger_mcts.info('****** CHANGING ROOT OF MCTS TREE TO %s FOR AGENT %s ******', state.id, self.name)
self.mcts.root = self.mcts.tree[state.id]
def parallel_simulate(self, num_processes=config.THREADS):
with ProcessPoolExecutor(max_workers=num_processes) as executor:
# 각 프로세스가 동일한 시뮬레이션 횟수를 수행하도록 분배
sims_per_process = self.MCTSsimulations // num_processes
remaining_sims = self.MCTSsimulations % num_processes
# 프로세스별 시뮬레이션 횟수 설정
process_sims = [sims_per_process + (1 if i < remaining_sims else 0)
for i in range(num_processes)]
# 병렬 시뮬레이션 실행
futures = [executor.submit(self._process_simulation, sims)
for sims in process_sims]
# 결과 수집 및 통계 합산
for future in futures:
sim_tree = future.result()
self.mcts.merge_with(sim_tree)
def _process_simulation(self, num_sims):
"""각 프로세스에서 실행되는 시뮬레이션"""
print('!', end='')
# root 노드의 복사본 생성
root_copy = mc.Node(self.mcts.root.state)
mcts_copy = mc.MCTS(root_copy, self.cpuct)
# root 노드의 엣지 정보 복사
for action, edge in self.mcts.root.edges:
new_edge = mc.Edge(root_copy, edge.outNode, edge.stats['P'], action)
root_copy.edges.append((action, new_edge))
for _ in range(num_sims):
leaf, value, done, breadcrumbs = mcts_copy.moveToLeaf()
value, breadcrumbs = self.evaluateLeaf(leaf, value, done, breadcrumbs)
mcts_copy.backFill(leaf, value, breadcrumbs)
return mcts_copy.tree