-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataloader.py
265 lines (231 loc) · 9.45 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# -*- coding: utf-8 -*-
""" DataLoader
"""
import os
import re
import json
import pickle
from collections import defaultdict
seed_value = int(os.getenv('RANDOM_SEED', -1))
if seed_value != -1:
import random
random.seed(seed_value)
import numpy as np
np.random.seed(seed_value)
import tensorflow as tf
tf.set_random_seed(seed_value)
from keras.preprocessing.sequence import pad_sequences
from model import VariationalAutoencoder, Autoencoder
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
"""
string = string.replace("\n", "")
string = string.replace("\t", "")
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " ( ", string)
string = re.sub(r"\)", " ) ", string)
string = re.sub(r"\?", " ? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
class DataGenerator:
def __init__(self, batch_size, max_len):
self.batch_size = batch_size
self.max_len = max_len
def set_dataset(self, train_set):
self.train_set = train_set
self.train_size = len(self.train_set)
self.train_steps = len(self.train_set) // self.batch_size
if self.train_size % self.batch_size != 0:
self.train_steps += 1
def __iter__(self, shuffle=True):
while True:
idxs = list(range(self.train_size))
if shuffle:
np.random.shuffle(idxs)
batch_token_ids, batch_segment_ids, batch_tcol_ids, batch_label_ids = [], [], [], []
for idx in idxs:
d = self.train_set[idx]
batch_token_ids.append(d['token_ids'])
batch_segment_ids.append(d['segment_ids'])
batch_tcol_ids.append(d['tcol_ids'])
batch_label_ids.append(d['label_id'])
if len(batch_token_ids) == self.batch_size or idx == idxs[-1]:
batch_token_ids = pad_sequences(batch_token_ids, maxlen=self.max_len, padding='post', truncating='post')
batch_segment_ids = pad_sequences(batch_segment_ids, maxlen=self.max_len, padding='post', truncating='post')
batch_tcol_ids = np.array(batch_tcol_ids)
batch_label_ids = np.array(batch_label_ids)
yield [batch_token_ids, batch_segment_ids, batch_tcol_ids], batch_label_ids
batch_token_ids, batch_segment_ids, batch_tcol_ids, batch_label_ids = [], [], [], []
@property
def steps_per_epoch(self):
return self.train_steps
class DataLoader:
def __init__(self, tokenizer, max_len, use_vae=False, batch_size=64, ae_epochs=20):
self._train_set = []
self._dev_set = []
self._test_set = []
self.use_vae = use_vae
self.batch_size = batch_size
self.ae_latent_dim = max_len # latent dim equal to max len
self.ae_epochs = ae_epochs
self.train_steps = 0
self.max_len = max_len
self.tokenizer = tokenizer
self.tcol_info = defaultdict(dict)
self.tcol = {}
self.label2idx = {}
self.token2cnt = defaultdict(int)
self.pad = '<pad>'
self.unk = '<unk>'
self.autoencoder = None
def init_autoencoder(self):
if self.autoencoder is None:
if self.use_vae:
self.autoencoder = VariationalAutoencoder(
latent_dim=self.ae_latent_dim, epochs=self.ae_epochs, batch_size=self.batch_size)
else:
self.autoencoder = Autoencoder(latent_dim=self.ae_latent_dim, epochs=self.ae_epochs, batch_size=self.batch_size)
self.autoencoder._compile(self.label_size * self.max_len)
def save_vocab(self, save_path):
with open(save_path, 'wb') as writer:
pickle.dump({
'tcol_info': self.tcol_info,
'tcol': self.tcol,
'label2idx': self.label2idx,
'token2cnt': self.token2cnt
}, writer)
def load_vocab(self, save_path):
with open(save_path, 'rb') as reader:
obj = pickle.load(reader)
for key, val in obj.items():
setattr(self, key, val)
def save_autoencoder(self, save_path):
self.autoencoder.autoencoder.save_weights(save_path)
def load_autoencoder(self, save_path):
self.init_autoencoder()
self.autoencoder.autoencoder.load_weights(save_path)
def set_train(self, train_path):
"""set train dataset"""
self._train_set = self._read_data(train_path, build_vocab=True)
def set_dev(self, dev_path):
"""set dev dataset"""
self._dev_set = self._read_data(dev_path)
def set_test(self, test_path):
"""set test dataset"""
self._test_set = self._read_data(test_path)
@property
def train_set(self):
return self._train_set
@property
def dev_set(self):
return self._dev_set
@property
def test_set(self):
return self._test_set
@property
def label_size(self):
return len(self.label2idx)
def save_dataset(self, setname, fpath):
if setname == 'train':
dataset = self.train_set
elif setname == 'dev':
dataset = self.dev_set
elif setname == 'test':
dataset = self.test_set
else:
raise ValueError(f'not support set {setname}')
with open(fpath, 'w') as writer:
for data in dataset:
writer.writelines(json.dumps(data, ensure_ascii=False) + "\n")
def load_dataset(self, setname, fpath):
if setname not in ['train', 'dev', 'test']:
raise ValueError(f'not support set {setname}')
dataset = []
with open(fpath, 'r') as reader:
for line in reader:
dataset.append(json.loads(line.strip()))
if setname == 'train':
self._train_set = dataset
elif setname == 'dev':
self._dev_set = dataset
elif setname == 'test':
self._test_set = dataset
def add_tcol_info(self, token, label):
""" add TCoL
"""
if label not in self.tcol_info[token]:
self.tcol_info[token][label] = 1
else:
self.tcol_info[token][label] += 1
def set_tcol(self):
""" set TCoL
"""
self.tcol[0] = np.array([0] * self.label_size) # pad
self.tcol[1] = np.array([0] * self.label_size) # unk
self.tcol[0] = np.reshape(self.tcol[0], (1, -1))
self.tcol[1] = np.reshape(self.tcol[1], (1, -1))
for token, label_dict in self.tcol_info.items():
vector = [0] * self.label_size
for label_id, cnt in label_dict.items():
vector[label_id] = cnt / self.token2cnt[token]
vector = np.array(vector)
self.tcol[token] = np.reshape(vector, (1, -1))
def parse_tcol_ids(self, data, build_vocab=False):
if self.use_vae:
print("batch alignment...")
print("previous data size:", len(data))
keep_size = len(data) // self.batch_size
data = data[:keep_size * self.batch_size]
print("alignment data size:", len(data))
if build_vocab:
print("set tcol....")
self.set_tcol()
print("token size:", len(self.tcol))
print("done to set tcol...")
tcol_vectors = []
for obj in data:
padded = [0] * (self.max_len - len(obj['token_ids']))
token_ids = obj['token_ids'] + padded
tcol_vector = np.concatenate([self.tcol.get(token, self.tcol[1]) for token in token_ids[:self.max_len]])
tcol_vector = np.reshape(tcol_vector, (1, -1))
tcol_vectors.append(tcol_vector)
print("train vae...")
if len(tcol_vectors) > 1:
X = np.concatenate(tcol_vectors)
else:
X = tcol_vectors[0]
if build_vocab:
self.init_autoencoder()
self.autoencoder.fit(X)
X = self.autoencoder.encoder.predict(X, batch_size=self.batch_size)
# decomposite
assert len(X) == len(data)
for x, obj in zip(X, data):
obj['tcol_ids'] = x.tolist()
return data
def _read_data(self, fpath, build_vocab=False):
data = []
with open(fpath, "r", encoding="utf-8") as reader:
for line in reader:
obj = json.loads(line)
obj['text'] = clean_str(obj['text'])
if build_vocab:
if obj['label'] not in self.label2idx:
self.label2idx[obj['label']] = len(self.label2idx)
tokenized = self.tokenizer.encode(obj['text'])
token_ids, segment_ids = tokenized.ids, tokenized.segment_ids
for token in token_ids:
self.token2cnt[token] += 1
self.add_tcol_info(token, self.label2idx[obj['label']])
data.append({'token_ids': token_ids, 'segment_ids': segment_ids, 'label_id': self.label2idx[obj['label']]})
data = self.parse_tcol_ids(data, build_vocab=build_vocab)
return data