-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathroute_shape_process_scripts.py
477 lines (404 loc) · 22.9 KB
/
route_shape_process_scripts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import os
import pandas as pd
import numpy as np
import geopandas as gpd
from geopandas import GeoDataFrame
from shapely.geometry import Point, LineString, MultiLineString
from shapely.ops import nearest_points
import multiprocessing
from datetime import datetime
import multiprocessing
import sys
import boto3
import logging
import time
import io
from functools import partial
import math
from os import listdir
from os.path import isfile, join
#create a log file - to store details about each step
named_tuple = time.localtime() # get struct_time
time_string = time.strftime("%Y_%m_%d_%H%M", named_tuple)
log_filename = "LOG_{}_route_shape_process.log".format(time_string)
logging.basicConfig(filename=log_filename,
level=logging.INFO,
format='%(asctime)s.%(msecs)03d %(name)s - %(levelname)s - %(message)s',
datefmt="%Y-%m-%d %H:%M:%S")
#you'll need to save the s3 bucket name in your environmental variables (or switch this reference)
bucket_name = "bus350-data" #os.environ["BUS_BUCKET_NAME"]
##################################################################################
########################## UTILITY FUNCTIONS ################################
##################################################################################
def send_log_to_s3(log_filename):
'''
'''
s3 = boto3.client('s3')
put_filename = "AutomationLogs/"
key_filename = put_filename+log_filename
with open(log_filename) as f:
result_body = f.read()
s3.put_object(Bucket=bucket_name, Body=result_body, Key=key_filename)
os.system('rm -r {}'.format(log_filename))
def get_csv_s3_make_df(file_key):
'''
'''
s3 = boto3.client('s3')
s3_object = s3.get_object(Bucket=bucket_name, Key=file_key)
df = pd.read_csv(io.BytesIO(s3_object['Body'].read()))
return df
def send_output_df_to_s3(df, s3_prefix, csv_name):
'''
'''
s3 = boto3.client('s3')
key_filename = s3_prefix+csv_name
result_body = df.to_csv(index=False)
s3.put_object(Bucket=bucket_name, Body=result_body, Key=key_filename)
def get_send_route_progress_file(route_name, status):
'''
'''
file_key = "progress/route_progress_status.csv"
route_status = get_csv_s3_make_df(file_key)
route_status.set_index('route_name', inplace=True)
route_status.loc[route_name,'status'] = status
s3_prefix = "progress/"
csv_name = "route_progress_status.csv"
route_status.reset_index(inplace=True)
send_output_df_to_s3(route_status, s3_prefix, csv_name)
def get_positions_months(month_list,position_folder_location="input_position_files/"):
'''
month_list = ['201809', '201810', '201811'] need to point to
the right folder holding your h5 files
'''
for i, position_date in enumerate(month_list):
if i == 0:
positions = pd.read_hdf(f"{position_folder_location}positions_{position_date}.h5",low_memory=False)
logging.info("{}, {}, {}".format(position_date,len(positions), positions.columns))
full_route_positions = positions.copy()
else:
positions = pd.read_hdf(f"{position_folder_location}positions_{position_date}.h5",low_memory=False)
logging.info("{}, {}, {}".format(position_date,len(positions), positions.columns))
full_route_positions = full_route_positions.append(positions)
full_route_positions.sort_index(inplace=True)
return full_route_positions
##################################################################################
# convert index from UTC to pct
##################################################################################
def convert_index_to_pct(positions_df):
'''
'''
positions_UTC = positions_df.tz_localize('UTC')
positions_pacific = positions_UTC.tz_convert('US/Pacific')
return positions_pacific
##################################################################################
# GET MOST USED SHAPE ID PER ROUTE ID AND DIRECTION ID
##################################################################################
def get_most_used_shape_id_per_direction(full_trip_stop_schedule, route_id, direction_id):
'''
'''
full_df = pd.DataFrame()
for name, group in full_trip_stop_schedule[full_trip_stop_schedule['route_id'] == route_id].groupby(['start_gtfs_date','end_gtfs_date']):
#logging.info(name)
temp_df = group.groupby(['shape_id', 'direction_id','trip_headsign']).agg({'shape_id':'count'})\
.rename(columns={'shape_id':'shape_id_count'})\
.reset_index()
#logging.info(temp_df)
if full_df.empty:
full_df = temp_df
else:
full_df = full_df.append(temp_df)
#############################################################################
'''full_df has all shape_id, direction_id combinations over many gtfs
full_df_sorted groups by 'shape_id','direction_id','trip_headsign'
and sorts by the highest sum of shape_id_count (i.e. the most used shape)
TODO - there are routes with many "popular" shapes - this function will only pick 1
ideally we could find the part of the route that is consistent (usually the middle)
and combine all observations using this common shape'''
###############################################################################
full_df_sorted = full_df.groupby(['shape_id','direction_id','trip_headsign'])\
.agg({'shape_id_count':'sum'})\
.reset_index()\
.sort_values('shape_id_count', ascending=False)
shape_id = full_df_sorted.loc[full_df_sorted['direction_id']==direction_id].iloc[0]['shape_id']
trip_headsign = full_df_sorted.loc[full_df_sorted['direction_id']==direction_id].iloc[0]['trip_headsign']
return (shape_id, trip_headsign)
##################################################################################
# add time index columns to help make a unique trip column later
# also for filtering instead of using time index <-- if you're into that :)
##################################################################################
def add_time_index_columns(positions_w_trips):
'''
'''
positions_w_trips.loc[:,'day'] = positions_w_trips.index.day
positions_w_trips.loc[:,'year'] = positions_w_trips.index.year #need year since we're combining years
positions_w_trips.loc[:,'month'] = positions_w_trips.index.month
positions_w_trips.loc[:,'hour'] = positions_w_trips.index.hour
positions_w_trips.loc[:,'dow'] = positions_w_trips.index.dayofweek
return positions_w_trips
def datetime_transform_df(df):
'''
'''
df['time_pct'] = df['time_pct'].apply(lambda x: pd.to_datetime(x, utc=True))
#df['time_pct'] = df['time_pct'].dt.tz_localize('UTC')
df['time_pct']= df['time_pct'].dt.tz_convert('US/Pacific')
return df
##################################################################################
# turn gtfs shapes file into geopandas dataframe
##################################################################################
def make_geopandas_shape_df(gtfs_shapes, shape_id):
'''
INPUT
-------
gtfs_shapes = gtfs shapes.txt file dataframe
shape_id = one shape_id to filter on
OUTPUT
-------
route_vertex_geo <-- geopandas version of a particular schedule shapes.txt geometry = route vertex points
'''
one_shape_df = gtfs_shapes[gtfs_shapes['shape_id'] == shape_id].copy()
if 'start_gtfs_date' in one_shape_df.columns.tolist():
one_shape_df.drop('start_gtfs_date',axis=1, inplace=True)
if 'end_gtfs_date' in one_shape_df.columns.tolist():
one_shape_df.drop('end_gtfs_date', axis=1,inplace=True)
one_shape_df.drop_duplicates(['shape_pt_sequence'], keep='first', inplace=True)
crs = {'init':'epsg:4326'}
shape_geometry = [Point(xy) for xy in zip(one_shape_df.shape_pt_lon, one_shape_df.shape_pt_lat)]
route_vertex_geo = GeoDataFrame(one_shape_df, crs=crs, geometry=shape_geometry)
return route_vertex_geo
##################################################################################
# function to add unique_trip_id to each row
##################################################################################
def get_unique_trip_id(row):
unique_trip = str(row['year'])+"_"+str(row['month'])+"_"+str(row['day'])+"_"+str(row['trip_id'])+"_"+str(row['vehicle_id'])
return unique_trip
##################################################################################
# JOIN VEHICLE POSITION OBSERVATIONS WITH GTFS
##################################################################################
def join_positions_with_gtfs_trips(positions, gtfs_trips, start_gtfs_date, end_gtfs_date):
'''
start_gtfs_date = YYYY-MM-DD e.g. '2018-01-01'
end_gtfs_date = YYYY-MM-DD e.g. '2018-01-17'
'''
if positions.loc[start_gtfs_date:end_gtfs_date].empty:
positions_w_trips = positions.loc[start_gtfs_date:end_gtfs_date]
else:
positions_w_trips = positions.loc[start_gtfs_date:end_gtfs_date].merge(gtfs_trips[['route_id',
'trip_id',
'direction_id',
'shape_id']],
how='left',
on=['route_id','trip_id'])
positions_w_trips.loc[:,'month_day_trip_veh'] = positions_w_trips.apply(get_unique_trip_id, axis=1)
return positions_w_trips
##################################################################################
# find closest node to an observed raw bus lat/lon
# alternatively could use shapely.ops nearest_points
##################################################################################
def get_nearest_route_node_sindex(row, route_vertex_geo):
'''
INPUT
-----------
row = a df row, each row is 1 vehicle observation
route_vertex_geo = geodataframe from route shape
OUTPUT
-------
shape_pt_sequence = the pt sequence along the route for the nearest node
to the vehicle location
---------
given a raw GPS coordinate from one bus away, get the closest
bus route shape vertex node
since we're using a spatial index, make sure the multiprocess chunks are large
there's a cost to creating the spatial index but there's also a big benefit
over a lot of observations vs. shapely nearest_point
'''
s_index = route_vertex_geo.sindex
veh_coords = (row['vehicle_long'],row['vehicle_lat'])
nearest_idx = list(s_index.nearest(veh_coords))
if len(nearest_idx) == 0:
shape_pt_sequence = 9999
else:
shape_pt_sequence = route_vertex_geo.iloc[nearest_idx]['shape_pt_sequence'].values[0]
return shape_pt_sequence
def get_close_node_parallel(df, route_vertex_geo):
'''
'''
df['shape_pt_sequence'] = df.apply(lambda x: get_nearest_route_node_sindex(x,
route_vertex_geo),
axis=1).copy()
return df
def get_close_node_process(df, route_vertex_geo):
#n_pools = multiprocessing.cpu_count() - 1
n_pools = 2
pool = multiprocessing.Pool(n_pools)
num_splits = n_pools
df_list = np.array_split(df, num_splits)
positions_w_near_node_df = pd.concat(pool.map(partial(get_close_node_parallel,
route_vertex_geo=route_vertex_geo
),
df_list))
pool.close()
pool.join()
positions_w_near_node_df = positions_w_near_node_df.merge(
route_vertex_geo[['shape_pt_sequence','shape_dist_traveled','shape_pt_lat','shape_pt_lon']],
how='left', on='shape_pt_sequence')
return positions_w_near_node_df
def join_tripstart(distance_time_list_df, full_trip_stop_schedule, trip_id_with_starttime):
'''
'''
normal_hours = [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
sched_col_to_keep = ['trip_id', 'arrival_time', 'departure_time', 'stop_id', 'stop_sequence',
'stop_name','stop_lat', 'stop_lon',
'route_id', 'trip_headsign', 'shape_id','route_short_name', 'route_desc']
#drop hours near '0' because the hour comparison gets messed up - gtfs has hours > 23 :(
full_trip_stop_schedule = full_trip_stop_schedule[sched_col_to_keep]
distance_time_list_df.reset_index(inplace=True)
positions_w_near_node_df = distance_time_list_df[distance_time_list_df.hour.isin(normal_hours)]
position_w_node_schedule = positions_w_near_node_df.merge(full_trip_stop_schedule,how='left',
left_on=['trip_id','route_id','shape_id','shape_pt_sequence'],
right_on=['trip_id','route_id','shape_id','stop_sequence'])
position_w_node_schedule.drop_duplicates(['month_day_trip_veh','shape_pt_sequence'], keep='last', inplace=True)
position_w_node_schedule['time_pct'] = position_w_node_schedule['time_pct'].dt.tz_convert('US/Pacific')
position_w_node_schedule = position_w_node_schedule.merge(trip_id_with_starttime, how='left', on='trip_id')
position_w_node_schedule['trip_start_time'] = position_w_node_schedule['trip_start_time'].apply(pd.to_datetime)
#take the time at every node and subtract the scheduled start time
position_w_node_schedule['actual_time_from_scheduled_start'] = (((position_w_node_schedule['time_pct'].dt.hour)*60+
position_w_node_schedule['time_pct'].dt.minute+
(position_w_node_schedule['time_pct'].dt.second)/60) -
((position_w_node_schedule.loc[:,'trip_start_time'].dt.hour)*60+
position_w_node_schedule.loc[:,'trip_start_time'].dt.minute+
(position_w_node_schedule.loc[:,'trip_start_time'].dt.second)/60))
position_w_node_schedule['arrival_time'] = position_w_node_schedule['arrival_time'].apply(pd.to_datetime)
#take the scheduled time at every stop and subtract the scheduled start time
position_w_node_schedule['scheduled_time_from_scheduled_start'] = (((position_w_node_schedule['arrival_time'].dt.hour)*60+
position_w_node_schedule['arrival_time'].dt.minute+
(position_w_node_schedule['arrival_time'].dt.second)/60) -
((position_w_node_schedule.loc[:,'trip_start_time'].dt.hour)*60+
position_w_node_schedule.loc[:,'trip_start_time'].dt.minute+
(position_w_node_schedule.loc[:,'trip_start_time'].dt.second)/60))
return position_w_node_schedule
def calc_distance(lat1, lon1, lat2, lon2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
return meters
Note this is an approximation based on great circle distance:
https://en.wikipedia.org/wiki/Great-circle_distance
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(math.radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2
c = 2 * math.asin(math.sqrt(a))
km = (6371 * c)
return km*1000
if __name__ == "__main__":
'''
first trial - needs to be in the same folder as the following files:
- see notebook 01 for transforming gtfs
"gtfs_routes_2018-08-15_2018-12-12.csv"
"gtfs_shapes_2018-08-15_2018-12-12.csv"
"gtfs_trips_2018-08-15_2018-12-12.csv"
"gtfs_2018-08-15_2018-12-12.csv"
usage route_shape_process_scripts.py <route_short_name>
<route_short_name> can be a list of single route [15] or [1,18,E Line]
-- if you put "all" instead of <route_short_name> the process will run
for all routes
NOTE - you may have to change the progress csv file location
'''
gtfs_merge_file_path = "../data/gtfs_merge/"
agg_filename = [f for f in listdir(gtfs_merge_file_path) if isfile(join(gtfs_merge_file_path, f))
and 'agg' in f][0]
routes_filename = [f for f in listdir(gtfs_merge_file_path) if isfile(join(gtfs_merge_file_path, f))
and 'routes' in f][0]
shapes_filename = [f for f in listdir(gtfs_merge_file_path) if isfile(join(gtfs_merge_file_path, f))
and 'shapes' in f][0]
trips_filename = [f for f in listdir(gtfs_merge_file_path) if isfile(join(gtfs_merge_file_path, f))
and 'trips' in f][0]
logging.info("grabbing csv")
full_routes_gtfs = pd.read_csv(f"{gtfs_merge_file_path}{routes_filename}",
low_memory=False)
full_shapes_gtfs = pd.read_csv(f"{gtfs_merge_file_path}{shapes_filename}",
low_memory=False)
full_trips_gtfs = pd.read_csv(f"{gtfs_merge_file_path}{trips_filename}",
low_memory=False)
full_trip_stop_schedule = pd.read_csv(f"{gtfs_merge_file_path}{agg_filename}",
low_memory=False)
tripid_w_starttime = full_trip_stop_schedule.groupby('trip_id')\
.agg({'trip_start_time':'min'})\
.reset_index()
#cheap and dirty way to make the route_name to id dictionary
route_name_to_id_dict = dict(zip(full_routes_gtfs.route_short_name.tolist(),
full_routes_gtfs.route_id.tolist()))
logging.info("grabbing arguments")
route_of_interest_input = sys.argv[1]
logging.info("route of interest argument = {}".format(route_of_interest_input))
if route_of_interest_input == 'all':
# route progress .csv is created so that you can a) track progress and b) start where you left off
# this could also be stored locally but I run this on a virtual computer so it's
# handy to send it to S3
s3_prefix = "progress/"
csv_name = "route_progress_status.csv"
route_status_file_key = s3_prefix+csv_name
route_status_df = get_csv_s3_make_df(route_status_file_key)
remaining_routes = route_status_df[route_status_df['status']=='not_started']['route_name'].unique()
else:
route_of_interest_input = route_of_interest_input.strip("[]").split(",")
remaining_routes = route_of_interest_input
month_list = ['201809', '201810', '201811']
all_route_positions = get_positions_months(month_list)
#
for route_of_interest in remaining_routes:
logging.info("starting work on route name = {}".format(route_of_interest))
route_of_interest_id = route_name_to_id_dict[route_of_interest]
logging.info("running get_positions_months_route_id")
single_route_positions = all_route_positions[all_route_positions['route_id']==route_of_interest_id].copy()
if single_route_positions.empty:
logging.info("skipping route name {} no positions".format(route_of_interest))
get_send_route_progress_file(route_of_interest, 'no_positions')
pass
else:
single_route_positions = convert_index_to_pct(single_route_positions)
single_route_positions = add_time_index_columns(single_route_positions)
direction_id_list = [0,1]
for direction in direction_id_list:
shape_id_of_interest, trip_headsign = get_most_used_shape_id_per_direction(full_trip_stop_schedule, route_of_interest_id, direction)
logging.info("starting process for direction = {}, shape_id = {}".format(direction, shape_id_of_interest))
logging.info("make one route_vertex_geo from shape_id {}".format(shape_id_of_interest))
route_vertex_geo = make_geopandas_shape_df(full_shapes_gtfs, shape_id_of_interest)
positions_w_trips = {}
for name, group in full_trips_gtfs.groupby(['start_gtfs_date','end_gtfs_date']):
#print(name)
positions_w_trips[name] = join_positions_with_gtfs_trips(single_route_positions, group, name[0], name[1])
for idx, dict_group in enumerate(positions_w_trips.keys()):
#print(dict_group)
if positions_w_trips[dict_group].empty:
pass
else:
if idx == 0:
unpacked_positions_full = positions_w_trips[dict_group].copy()
else:
unpacked_positions_full = unpacked_positions_full.append(positions_w_trips[dict_group])
unpacked_positions_one_shape = unpacked_positions_full[unpacked_positions_full['shape_id']==shape_id_of_interest]
logging.info("getting close nodes")
positions_w_near_node_df = get_close_node_process(unpacked_positions_one_shape, route_vertex_geo)
logging.info("datetime transform")
positions_w_near_node_datetime = datetime_transform_df(positions_w_near_node_df)
logging.info("join with gtfs schedule on shape_pt_sequence & calculate times from trip_start_time")
position_w_node_schedule = join_tripstart(positions_w_near_node_datetime,
full_trip_stop_schedule,
tripid_w_starttime)
#it's helpful to have this distance for debugging
position_w_node_schedule['distance_btw_veh_and_shape'] = position_w_node_schedule\
.apply(lambda x: calc_distance(x['vehicle_lat'],
x['vehicle_long'],
x['shape_pt_lat'],
x['shape_pt_lon']), axis=1)
csv_name = 'transformed/route_{}_{}_shape_{}_node_trips_w_nearest_2018-08-15_2018-12-11.csv'.format(
route_of_interest,"".join(trip_headsign.replace("/","-").split(" ")) ,shape_id_of_interest)
s3_prefix = "route_shape_files/"
logging.info("sending file to s3")
send_output_df_to_s3(position_w_node_schedule, s3_prefix, csv_name)
get_send_route_progress_file(route_of_interest, 'done')
send_log_to_s3(log_filename)