-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQASM256-Quantum Robotics
141 lines (105 loc) · 3.34 KB
/
QASM256-Quantum Robotics
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Define a robot control problem
robot_control = QuantumOptimization(
state_space="robot_arm_movement",
objective="minimize_energy",
constraints={"collision_avoidance": True}
)
# Optimize control commands
control_sequence = Solve(robot_control)
ExecuteRobotCommands(control_sequence)
print("Optimized Control Sequence:", control_sequence)
# Define swarm coordination problem
swarm = QuantumSwarm(
robots=["Drone1", "Drone2", "Drone3"],
task="search_and_rescue",
constraints={"energy_efficiency": True}
)
# Optimize swarm actions
swarm_strategy = OptimizeSwarm(swarm)
print("Optimized Swarm Strategy:", swarm_strategy)
# Set up real-time quantum feedback loop
feedback = QuantumFeedback(
sensors=["Lidar", "Camera"],
quantum_model="AdaptiveControlNN"
)
# Run feedback for robotic navigation
while not MissionComplete():
feedback.Update()
print("Robot State:", feedback.GetState())
# Define an energy grid optimization problem
grid = EnergyGrid(
nodes=["Solar", "Wind", "Battery"],
objective="maximize_efficiency",
constraints={"carbon_emissions": 0}
)
# Solve the optimization
grid_result = QuantumOptimize(grid)
print("Optimal Energy Distribution:", grid_result)
# Define hydrogen engine parameters
engine = HydrogenEngine(
combustion_model="QuantumFluidDynamics",
energy_input=100,
compression_ratio=8.0
)
# Simulate combustion process
simulation_result = SimulateEngine(engine, steps=500)
print("Simulation Result:", simulation_result)
# Define battery optimization problem
battery = QuantumBattery(
model="LithiumIon",
objective="maximize_lifetime",
constraints={"temperature_limit": 50}
)
# Solve for optimal usage cycles
battery_strategy = OptimizeBattery(battery)
print("Optimal Battery Strategy:", battery_strategy)
# Set up real-time quantum optimizer
real_time_optimizer = RealTimeQuantumOptimize(
data_stream="sensor_data.csv",
objective="dynamic_adaptation",
refresh_rate=1 # Every second
)
# Run optimizer in real-time
while True:
optimized_result = real_time_optimizer.Update()
print("Real-Time Optimization:", optimized_result)
# Define quantum data sources
data_sources = QuantumDataSources(["Source1", "Source2", "Source3"])
# Fuse data into a unified model
fused_model = QuantumFuse(data_sources, method="Bayesian")
print("Fused Quantum Model:", fused_model)
# Initialize adaptive quantum model
adaptive_model = AdaptiveQuantumModel(
architecture="SelfOptimizingNN",
qubits=Register(256)
)
# Continuously adapt the model
for new_data in DataStream("real_time_data.csv"):
adaptive_model.Update(new_data)
print("Updated Model:", adaptive_model)
# Define a stress test case
stress_test QuantumStressTest {
qubits = Register(1024)
circuit = Circuit(qubits)
for i in range(1024):
AddGate(circuit, "H", qubits[i])
ExecuteCircuit(circuit)
}
RunTest(QuantumStressTest)
# Validate a quantum workflow
workflow = QuantumWorkflow(
steps=[
"Initialize qubits",
"Entangle pairs",
"Apply Grover's algorithm",
"Measure results"
]
)
validation_result = ValidateWorkflow(workflow)
assert(validation_result.success)
# Define a fuzz test case
fuzz_test SecureFuzzTest {
pipeline = SecurePipeline(steps=["Encrypt", "Optimize", "Decrypt"])
FuzzTest(pipeline, iterations=10000)
}
RunTest(SecureFuzzTest)