forked from easezyc/Multitask-Recommendation-Library
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnohup.out
540 lines (420 loc) · 23.6 KB
/
nohup.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
wandb: wandb version 0.15.0 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.14.2
wandb: Run data is saved locally in /home/yecm/public/Multitask-Recommendation-Library/wandb/run-20230424_214036-wbjtq6lh
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run MMoE_Synthetic
wandb: ⭐️ View project at https://wandb.ai/open-book/Multitask-Recommendation
wandb: 🚀 View run at https://wandb.ai/open-book/Multitask-Recommendation/runs/wbjtq6lh
[34m[1mparameters: [0mdataset_name=MMoE_Synthetic, dataset_path=./data/, model_name=sharedbottom, expert_num=8, embed_dim=128, weights=None, categorical_loss=MSELoss, numeric_loss=None, optimizer_name=Adam, lr=0.001, weight_decay=1e-06, do_balance=True, balancer_name=CorrBalance, corr_factor=[1, 0.9], just_test_can_run=False, device_num=0, save_dir=runs/corr_test, save_epoch=4, max_epochs=50, batch_size=2048, patience=10, min_delta=0, cumulative_delta=False
[34m[1m训练设备[0m: cuda:0。
[34m[1m数据集[0m: 开始加载MMoE_Synthetic:
[34m[1m数据集[0m: 加载成功。
[34m[1m模型[0m: 开始加载sharedbottom:
/home/yecm/.conda/envs/torch/lib/python3.11/site-packages/torch/jit/_trace.py:1056: TracerWarning: Encountering a list at the output of the tracer might cause the trace to be incorrect, this is only valid if the container structure does not change based on the module's inputs. Consider using a constant container instead (e.g. for `list`, use a `tuple` instead. for `dict`, use a `NamedTuple` instead). If you absolutely need this and know the side effects, pass strict=False to trace() to allow this behavior.
module._c._create_method_from_trace(
[34m[1m模型[0m: 加载成功。
[34m[1m损失函数[0m: 加载完成:MSELoss()。
[34m[1m优化器[0m: 加载完成,当前为平衡模式。
[34m[1m实验管理[0m: 数据集MMoE_Synthetic新增实验16。
Model: Shared-Bottom
SharedBottomModel(
(embedding): EmbeddingLayer(
(embedding): Embedding(0, 128)
)
(numerical_layer): Linear(in_features=50, out_features=128, bias=True)
(bottom): MultiLayerPerceptron(
(mlp): Sequential(
(0): Linear(in_features=128, out_features=512, bias=True)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=512, out_features=256, bias=True)
(5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
)
(tower): ModuleList(
(0-1): 2 x MultiLayerPerceptron(
(mlp): Sequential(
(0): Linear(in_features=256, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
)
)
ClearML Task: created new task id=b08e675a69a94008af7b1d3a93e5ddb8
[34m[1m训练[0m: 终于可以开始啦!
ClearML results page: https://app.clear.ml/projects/9c3342c69e80438b9f5ec86ef7527bcc/experiments/b08e675a69a94008af7b1d3a93e5ddb8/output/log
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:01<00:00, 1.57s/it]100%|██████████| 1/1 [00:01<00:00, 1.79s/it]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_16/sharedbottom_0.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.10it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.38it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.22it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.27it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.18it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.21it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.24it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.28it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_16/sharedbottom_4.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.07it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.32it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.22it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.29it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.24it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.33it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.23it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_16/sharedbottom_8.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.06it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
Early Stopper在10轮都没有改进后丧失了耐心,训练即将结束。
历史最佳 0 在第 -1 轮达到。
wandb: Waiting for W&B process to finish... (success).
wandb:
wandb: Run history:
wandb: avg_loss ███▇▇▆▅▄▃▁
wandb: avg_sco ▁▁▁▂▂▃▄▅▆█
wandb: epoch ▁▁▂▂▃▃▃▃▄▄▅▅▆▆▆▆▇▇██
wandb: loss0 ███▇▇▆▅▄▃▁
wandb: loss1 ███▇▇▆▅▄▃▁
wandb: score0 ▁▁▁▂▂▃▄▅▆█
wandb: score1 ▁▁▁▂▂▃▄▅▆█
wandb:
wandb: Run summary:
wandb: avg_loss 0.96234
wandb: avg_sco -0.00494
wandb: epoch 9
wandb: loss0 0.93902
wandb: loss1 0.98566
wandb: score0 0.01167
wandb: score1 -0.02155
wandb:
wandb: 🚀 View run MMoE_Synthetic at: https://wandb.ai/open-book/Multitask-Recommendation/runs/wbjtq6lh
wandb: Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20230424_214036-wbjtq6lh/logs
wandb: Currently logged in as: 2603119857 (open-book). Use `wandb login --relogin` to force relogin
wandb: wandb version 0.15.0 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.14.2
wandb: Run data is saved locally in /home/yecm/public/Multitask-Recommendation-Library/wandb/run-20230424_214620-zhinlz80
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run MMoE_Synthetic
wandb: ⭐️ View project at https://wandb.ai/open-book/Multitask-Recommendation
wandb: 🚀 View run at https://wandb.ai/open-book/Multitask-Recommendation/runs/zhinlz80
[34m[1mparameters: [0mdataset_name=MMoE_Synthetic, dataset_path=./data/, model_name=sharedbottom, expert_num=8, embed_dim=128, weights=None, categorical_loss=MSELoss, numeric_loss=None, optimizer_name=Adam, lr=0.001, weight_decay=1e-06, do_balance=True, balancer_name=CorrBalance, corr_factor=[1, 0.9], just_test_can_run=False, device_num=0, save_dir=runs/corr_test, save_epoch=4, max_epochs=50, batch_size=2048, patience=10, min_delta=0, cumulative_delta=False
[34m[1m训练设备[0m: cuda:0。
[34m[1m数据集[0m: 开始加载MMoE_Synthetic:
[34m[1m数据集[0m: 加载成功。
[34m[1m模型[0m: 开始加载sharedbottom:
/home/yecm/.conda/envs/torch/lib/python3.11/site-packages/torch/jit/_trace.py:1056: TracerWarning: Encountering a list at the output of the tracer might cause the trace to be incorrect, this is only valid if the container structure does not change based on the module's inputs. Consider using a constant container instead (e.g. for `list`, use a `tuple` instead. for `dict`, use a `NamedTuple` instead). If you absolutely need this and know the side effects, pass strict=False to trace() to allow this behavior.
module._c._create_method_from_trace(
[34m[1m模型[0m: 加载成功。
[34m[1m损失函数[0m: 加载完成:MSELoss()。
[34m[1m优化器[0m: 加载完成,当前为平衡模式。
[34m[1m实验管理[0m: 数据集MMoE_Synthetic新增实验17。
Model: Shared-Bottom
SharedBottomModel(
(embedding): EmbeddingLayer(
(embedding): Embedding(0, 128)
)
(numerical_layer): Linear(in_features=50, out_features=128, bias=True)
(bottom): MultiLayerPerceptron(
(mlp): Sequential(
(0): Linear(in_features=128, out_features=512, bias=True)
(1): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=512, out_features=256, bias=True)
(5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
)
)
(tower): ModuleList(
(0-1): 2 x MultiLayerPerceptron(
(mlp): Sequential(
(0): Linear(in_features=256, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): Dropout(p=0.2, inplace=False)
(4): Linear(in_features=128, out_features=64, bias=True)
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): ReLU()
(7): Dropout(p=0.2, inplace=False)
(8): Linear(in_features=64, out_features=1, bias=True)
)
)
)
)
ClearML Task: created new task id=51901ba9ce9e4e7f992b911b9edbdb30
[34m[1m训练[0m: 终于可以开始啦!
ClearML results page: https://app.clear.ml/projects/9c3342c69e80438b9f5ec86ef7527bcc/experiments/51901ba9ce9e4e7f992b911b9edbdb30/output/log
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:01<00:00, 1.52s/it]100%|██████████| 1/1 [00:01<00:00, 1.74s/it]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.30it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_0.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.11it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.39it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.34it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.24it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.24it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.31it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_4.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.09it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.31it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.24it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.23it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.21it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_8.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.08it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.27it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.31it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.21it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.37it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.33it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.23it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_12.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.04it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.22it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.28it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.24it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.29it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.31it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_16.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.04it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.22it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.23it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.29it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.31it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.17it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.18it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_20.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.04it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.22it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.20it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.28it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.20it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.27it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_24.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.07it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.33it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.33it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.18it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.35it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.17it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_28.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.07it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.19it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.20it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.27it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.20it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.27it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_32.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.11it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.23it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.13it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.37it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.24it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.23it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.29it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_36.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.06it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.21it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.21it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.22it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_40.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.05it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.33it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.21it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.35it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.19it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.27it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.24it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_44.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.07it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.36it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.24it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.25it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.22it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.28it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.33it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.28it/s]
latest model saved to /home/yecm/public/Multitask-Recommendation-Library/runs/corr_test/exp_17/sharedbottom_48.pt
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.07it/s]
0%| | 0/1 [00:00<?, ?it/s]100%|██████████| 1/1 [00:00<00:00, 1.26it/s]
历史最佳 0.4257899673473211 在第 49 轮达到。
wandb: Waiting for W&B process to finish... (success).
wandb:
wandb: Run history:
wandb: avg_loss ████▇▇▇▆▅▅▄▄▃▃▃▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: avg_sco ▁▁▁▁▂▂▂▃▄▄▅▅▆▆▆▇▇▇▇▇▇▇██████████████████
wandb: epoch ▁▁▁▁▂▂▂▂▂▃▃▃▃▃▃▄▄▄▄▄▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇▇███
wandb: loss0 ████▇▇▇▆▅▅▄▄▃▃▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: loss1 ████▇▇▇▆▅▅▄▄▃▃▃▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: score0 ▁▁▁▁▂▂▂▃▄▄▅▅▆▆▇▇▇▇▇▇▇▇██████████████████
wandb: score1 ▁▁▁▁▂▂▂▃▄▄▅▅▆▆▆▇▇▇▇▇▇▇▇█████████████████
wandb:
wandb: Run summary:
wandb: avg_loss 0.54986
wandb: avg_sco 0.42579
wandb: epoch 49
wandb: loss0 0.53799
wandb: loss1 0.56172
wandb: score0 0.43376
wandb: score1 0.41782
wandb:
wandb: 🚀 View run MMoE_Synthetic at: https://wandb.ai/open-book/Multitask-Recommendation/runs/zhinlz80
wandb: Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20230424_214620-zhinlz80/logs