forked from easezyc/Multitask-Recommendation-Library
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathautoml_exp.py
418 lines (347 loc) · 15.2 KB
/
automl_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# %%
# dataset loading
from sklearnex import patch_sklearn, config_context
patch_sklearn()
from sklearnex import patch_sklearn, config_context
patch_sklearn()
import pandas as pd
# 'os' module provides functions for interacting with the operating system
import os
# 'Numpy' is used for mathematical operations on large, multi-dimensional arrays and matrices
import numpy as np
# 'Pandas' is used for data manipulation and analysis
import pandas as pd
# 'Matplotlib' is a data visualization library for 2D and 3D plots, built on numpy
from matplotlib import pyplot as plt
# 'Seaborn' is based on matplotlib; used for plotting statistical graphics
import seaborn as sns
# to suppress warnings
import warnings
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import tree
from sklearn.tree import _tree
from sklearn.base import is_classifier # 用于判断是回归树还是分类树
from dtreeviz.colors import adjust_colors # 用于分类树颜色(色盲友好模式)
import seaborn as sns #用于回归树颜色
from matplotlib.colors import Normalize # 用于标准化RGB数值
import graphviz # 插入graphviz库
import os
plt.style.use("default")
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
# %%
# https://blog.csdn.net/wtySama/article/details/105316240
import matplotlib
print(matplotlib.matplotlib_fname())
# https://blog.csdn.net/jlb1024/article/details/98037525
# %%
from pathlib import Path
project_root = Path('.').resolve()
print(project_root)
# %%
from munch import DefaultMunch, Munch
from autogluon.tabular import TabularDataset, TabularPredictor
from autogluon.common.utils.utils import setup_outputdir
from autogluon.core.utils.loaders import load_pkl
from autogluon.core.utils.savers import save_pkl
from torch.utils.data import DataLoader
import os
import joblib
memory = joblib.Memory('./joblib_tmp', verbose=1)
dumb_num = 1
categorical_num, numerical_num, labels_num = (16, 63, 2)
# cate_names = [i for i in range(categorical_num)]
# numeric_names = [i for i in range(categorical_num, categorical_num+numerical_num)]
# label_names = [i for i in range(categorical_num+numerical_num, categorical_num+numerical_num+labels_num)]
print(categorical_num, numerical_num, labels_num)
@memory.cache
def get_ds():
train_data = TabularDataset((project_root/'data/AliExpress_NL/train.csv').as_posix())
test_data = TabularDataset((project_root/'data/AliExpress_NL/test.csv').as_posix())
return train_data, test_data
@memory.cache
def get_processed():
train_data, test_data = get_ds()
train_data.drop(columns=['search_id'], inplace=True)
test_data.drop(columns=['search_id'], inplace=True)
cate_names = train_data.columns[:categorical_num]
numeric_names = train_data.columns[categorical_num:categorical_num+numerical_num]
label_names = train_data.columns[categorical_num+numerical_num:categorical_num+numerical_num+labels_num]
def get_cated():
return train_data[cate_names].astype('category'), test_data[cate_names].astype('category')
train_data[cate_names], test_data[cate_names] = get_cated()
return train_data, test_data
train_data, test_data = get_processed()
print(train_data.info())
# %%
# train_data.head()
test_data.head()
# %%
cate_names = train_data.columns[:categorical_num]
numeric_names = train_data.columns[categorical_num:categorical_num+numerical_num]
label_names = train_data.columns[categorical_num+numerical_num:categorical_num+numerical_num+labels_num]
cate_names, numeric_names, label_names
# %%
y_learn = 0
y_name = label_names[y_learn]
# %% [markdown]
# ## 基本分析
# %%
# import autogluon.eda.auto as auto
# auto.covariate_shift_detection(train_data=train_data, test_data=test_data, label=y_name)
# plt.savefig(f'runs/analysis_fig/covariate_shift_detection_for {y_name}.png')
# %%
from sklearn.model_selection import train_test_split
@memory.cache
def get_single_label():
return train_data[label_names[0]]+train_data[label_names[1]], test_data[label_names[0]]+test_data[label_names[1]]
@memory.cache
def get_sampled():
tr_y, te_y = get_single_label()
_, train_data_sampled = train_test_split(train_data, test_size=0.001, stratify=tr_y, random_state=42)
_, test_data_sampled = train_test_split(test_data, test_size=0.001, stratify=te_y, random_state=42)
return train_data_sampled, test_data_sampled
train_data_sampled, test_data_sampled = get_sampled()
# %%
len(test_data)/(len(train_data)+len(test_data))
# %%
from sklearn.model_selection import train_test_split
@memory.cache
def get_concat():
return pd.concat([train_data, test_data], ignore_index=True)
@memory.cache
def get_concated_label():
tr_y, te_y = get_single_label()
return pd.concat([tr_y, te_y], ignore_index=True)
@memory.cache
def get_reshuffled():
cated = get_concat()
y = get_concated_label()
return train_test_split(cated, test_size=0.3, stratify=y, random_state=42)
train_data, test_data = get_reshuffled()
# %%
@memory.cache
def get_single_label_again():
return train_data[label_names[0]]+train_data[label_names[1]], test_data[label_names[0]]+test_data[label_names[1]]
@memory.cache
def get_sampled_again():
tr_y, te_y = get_single_label_again()
_, train_data_sampled = train_test_split(train_data, test_size=0.001, stratify=tr_y, random_state=42)
_, test_data_sampled = train_test_split(test_data, test_size=0.001, stratify=te_y, random_state=42)
return train_data_sampled, test_data_sampled
train_data_sampled, test_data_sampled = get_sampled_again()
# %%
len(train_data_sampled), len(test_data_sampled)
# %%
# auto.covariate_shift_detection(train_data=train_data_sampled, test_data=test_data_sampled, label=y_name)
# auto.covariate_shift_detection(train_data=train_data_sampled, test_data=test_data_sampled, label=label_names[1])
# 用来筛选是否有 id 类的 特征存在,使得 测试集和训练集中很不一样,就是id单调递增而已。
# %%
# auto.dataset_overview(train_data=train_data, test_data=test_data, label=y_name)
# # %%
# import autogluon.eda.auto as auto
# for i in range(2):
# y_name = label_names[i]
# other_name = label_names[1-i]
# auto.target_analysis(train_data=train_data[list(numeric_names)+[y_name]], label=y_name)
# state = auto.quick_fit(
# train_data[list(numeric_names)+[y_name]],
# y_name,
# return_state=True,
# show_feature_importance_barplots=True
# )
# # %%
# state = auto.partial_dependence_plots(train_data_sampled[list(numeric_names)+[y_name]], label=y_name, return_state=True)
# # %%
# # auto.analyze_interaction(train_data=XY, x=y_name, y='Age', hue='Gender')
# # 41, 45, 31, 28
# # auto.analyze_interaction(train_data=XY, x=y_name, y='Weight', hue='Gender') # 女人本身就比男人轻,没什么好说的。 # 患病的人确实轻一点
# auto.analyze_interaction(train_data=train_data, x=numeric_names[28-1], y=numeric_names[45-1], hue=y_name)
# # auto.analyze_interaction(train_data=XY, x=y_name, y='FT4', hue='Gender')
# # %%
# auto.analyze_interaction(x=numeric_names[45-1], hue=y_name, train_data=train_data)
# # %%
# # This parameter specifies how many standard deviations above mean anomaly score are considered
# # to be anomalies (only needed for visualization, does not affect scores calculation).
# threshold_stds = 3
# auto.detect_anomalies(
# train_data=train_data,
# test_data=test_data,
# label=y_name,
# threshold_stds=threshold_stds,
# show_top_n_anomalies=None,
# fig_args={
# 'figsize': (6, 4)
# },
# chart_args={
# 'normal.color': 'lightgrey',
# 'anomaly.color': 'orange',
# }
# )
# %% [markdown]
# ## interpretable的决策树分析
# %%
# from draw_tree import classification_and_draw, regression_and_draw
# # x = math_X+answer_features+math_Y[:1]
# # y = math_Y[-1]
# y_learn = 0
# y_name = label_names[y_learn]
# X_columns = list(numeric_names)+list(cate_names)
# dt = classification_and_draw(train_data[X_columns], train_data[y_name],
# X_columns, train_data,
# class_names=[f"not {y_name}", y_name],
# path=f"runs/analysis_fig/{y_name}",
# dummy_indicator="()", replacement={})
# # %%
# y_test = test_data[y_name].values
# y_pred_prob = dt.predict_proba(test_data[X_columns])[:, 1]
# # %%
# import draw_metrics
# from sklearn.metrics import roc_auc_score, accuracy_score, balanced_accuracy_score, matthews_corrcoef, f1_score, precision_score, recall_score
# # draw_metrics.fast_evaluation(y_test, y_pred_prob, threshold=0.5)
# # {'roc_auc': 0.75364350774827,
# # 'accuracy': 0.635513820000493,
# # 'balanced_accuracy': 0.6865827700885063,
# # 'mcc': 0.11183493419822582,
# # 'f1': 0.08031662178944289,
# # 'precision': 0.042462848207854266,
# # 'recall': 0.7399473421796139}
# # draw_metrics.fast_evaluation(y_test, y_pred_prob, threshold=None, metric=f1_score)
# # draw_metrics.fast_evaluation(y_test, y_pred_prob, threshold=None, metric=draw_metrics.f1_score)
# draw_metrics.fast_evaluation(y_test[:10000], y_pred_prob[:10000], threshold=None, metric=draw_metrics.f1_score)
# # %%
# # draw_metrics.roc_auc_score(y_test, y_pred_prob)
# %timeit draw_metrics.roc_auc_score(y_test, y_pred_prob)
# # %%
# %timeit roc_auc_score(y_test, y_pred_prob) # 加速30倍
# # %%
# from PIL import Image
# from IPython.display import SVG
# image =SVG(f'runs/analysis_fig/{y_name}.svg')
# image
# %% [markdown]
# ## 自动机器学习分析
# %%
for y_learn in range(2):
y_name = label_names[y_learn]
predictor = TabularPredictor(label=y_name, verbosity=2,
eval_metric='roc_auc',
# sample_weight = 'balance_weight',
sample_weight = 'auto_weight',
).fit(
# predictor = TabularPredictor(label=y_name, verbosity=2, eval_metric='accuracy').fit(
train_data,
tuning_data=test_data,
# presets='best_quality', time_limit=60*60*2,
# num_gpus=4
)
# predictor = TabularPredictor(label=y_name, verbosity=0).fit(train_data, tuning_data=test_data)
res = predictor.evaluate(test_data, silent=True)
print(res)
# %%
# predictor = TabularPredictor.load("AutogluonModels/ag-20230729_111437/")
# dir(predictor)
# predictor.fit_summary()
# predictor.evaluate(test_data, silent=True)
fi = predictor.feature_importance(test_data, silent=True, num_shuffle_sets=None, include_confidence_band=True)
# predictor.leaderboard(test_data, silent=True, extra_info=True, extra_metrics=['accuracy', 'balanced_accuracy', 'mcc', 'f1', 'precision', 'recall'])
# %%
fi.to_csv(f'runs/analysis_fig/feature_importance_for {y_name}.csv', index=True)
plt.savefig(f"runs/analysis_fig/feature_importance_for {y_name}.png")
# %%
plt.figure(figsize=(20, 10))
plt.bar(fi.index.head(10), fi['importance'].head(10))
y_test = test_data[y_name].values
y_test
y_pred_prob = predictor.predict_proba(test_data, as_multiclass=False)
y_pred_prob[:10]
# %%
# from sklearn.metrics import roc_auc_score, accuracy_score, balanced_accuracy_score, matthews_corrcoef, f1_score, precision_score, recall_score
# import draw_metrics
# best_threshold_value, best_score = draw_metrics.best_threshold(y_test, y_pred_prob, metric=balanced_accuracy_score)
# # best_threshold_value, best_score = best_threshold(y_test, y_pred_prob, metric=matthews_corrcoef)
# # best_threshold_value, best_score = best_threshold(y_test, y_pred_prob)
# best_threshold_value, best_score
# draw_metrics.fast_evaluation(y_test, y_pred_prob, threshold=best_threshold_value)
best_threshold_value = 0.5
# %%
import scikitplot as skplt
# skplt.metrics.plot_confusion_matrix(y_test, y_pred_prob>best_threshold_value, normalize=False)
skplt.metrics.plot_confusion_matrix(y_test, y_pred_prob>best_threshold_value, normalize=True)
plt.savefig(f"runs/analysis_fig/confusion_matrix_for {y_name}.png")
# %%
# sns.displot(y_pred_prob)
def draw_probs(y_pred_prob, y_test):
sns.scatterplot(y_pred_prob[y_test==0], label=f"not {y_name}")
sns.scatterplot(y_pred_prob[y_test==1], label=f"{y_name}", color="red")
draw_probs(y_pred_prob, y_test)
plt.savefig(f"runs/analysis_fig/prob_separate_test_for {y_name}.png")
# %%
y_pred_train_prob = predictor.predict_proba(train_data, as_multiclass=False)
y_train = train_data[y_name].values
draw_probs(y_pred_train_prob, y_train)
plt.savefig(f"runs/analysis_fig/prob_separate_train_for {y_name}.png")
# %%
# 自动画图 工程
# https://zhuanlan.zhihu.com/p/372676897
# https://blog.csdn.net/wuli_xin/article/details/106612952
# 高端论文画图、动画
# https://zhuanlan.zhihu.com/p/144973329
# %%
import draw_metrics
draw_metrics.plot_auc(y_test, y_pred_prob, xlabel="以为点击/实际没点", ylabel="实际找出/所有点击")
plt.savefig(f"runs/analysis_fig/roc_auc_plot {y_name}.png")
# https://zhuanlan.zhihu.com/p/405658103
draw_metrics.plot_pr(y_test, y_pred_prob, xlabel="实际找出/所有点击", ylabel="确实点击/认为点击")
plt.savefig(f"runs/analysis_fig/pr_auc_plot {y_name}.png")
# %%
# %%
# scikit-plot 对结果进行可视化评估
import scikitplot as skplt
def get_skprob(binary_prob):
return np.array([1 - binary_prob, binary_prob]).T
# skplt.metrics.plot_roc(y_test, get_skprob(y_pred_prob))
# %%
# skplt.metrics.plot_precision_recall(y_test, get_skprob(y_pred_prob), cmap='nipy_spectral')
# %%
predictor.get_model_best()
# %%
skplt.metrics.plot_calibration_curve(y_test,
probas_list=[get_skprob(y_pred_prob)],
clf_names=[predictor.get_model_best()],
n_bins=10)
plt.savefig(f"runs/analysis_fig/calibration_curve {y_name}.png")
# %%
skplt.metrics.plot_cumulative_gain(y_true=y_test, y_probas=get_skprob(y_pred_prob))
plt.savefig(f"runs/analysis_fig/cumulative_gain {y_name}.png")
# %%
skplt.metrics.plot_ks_statistic(y_true=y_test, y_probas=get_skprob(y_pred_prob))
plt.savefig(f"runs/analysis_fig/ks_statistic {y_name}.png")
# %%
skplt.metrics.plot_lift_curve(y_true=y_test, y_probas=get_skprob(y_pred_prob))
plt.savefig(f"runs/analysis_fig/lift_curve {y_name}.png")
# %%
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.pipeline import make_pipeline
# https://zhuanlan.zhihu.com/p/555215223
# pca = make_pipeline(StandardScaler(), SimpleImputer(), PCA(random_state=1))
pca = make_pipeline(StandardScaler(), PCA(random_state=1))
pca.fit(train_data[numeric_names])
skplt.decomposition.plot_pca_2d_projection(pca, train_data[numeric_names], train_data[y_name])
plt.savefig(f"runs/analysis_fig/pca_2d_projection {y_name}.png")
# %%
# dir(pca)
pca.steps
# %%
skplt.decomposition.plot_pca_component_variance(pca.steps[1][1])
plt.savefig(f"runs/analysis_fig/pca_component_variance {y_name}.png")
# %%
# %%