-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_convnet.py
168 lines (143 loc) · 5.6 KB
/
train_convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import tensorflow as tf
import numpy as np
import math
import random
import sys
import os
import glob
from wav import loadfft2, savefft2, sanity
TRAIN_REPEAT=1
SIZE=32
DEPTH=1
#DIMS=[[4096,4096,1],[None,None,2],[None,None,4]]#, [256,256,8], [64,64,16]]
#DIMS=[[1024,1024,1], [512,512,2], [256,256,4]]
DIMS=[[1024,1024,1], [512,512,2], [256,256,4]]
#DIMS=[[256,256,1],[128, 128, 2],[64, 64, 4]]
#DIMS=[[128,128,1],[64, 64, 2], [32,32,4]]
FILTER_SIZE=[]
#SIZE=256
def max_pool(img, k):
return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='VALID')
def create(x):
prev_layer = x
prev_height = DIMS[0][0]
prev_depth=DIMS[0][2]
hidden = []
results = {}
for i, dim in enumerate(DIMS):
#print(i, dim)
depth = dim[2]
height = dim[0]
fw = fh = 2
sv = sd = 2
filterr = tf.Variable(tf.random_normal([fw, fh, prev_depth, depth]))
print(filterr)
#print(tf.shape(filterr))
#print(tf.shape(prev_layer))
conv = tf.nn.conv2d(prev_layer, filterr, [1, sv, sd, 1], padding='VALID')
biases = tf.Variable(tf.zeros([depth]))
#conv = max_pool(conv, 1)
#conv = tf.nn.dropout(conv, 0.75)
hidden = tf.nn.relu(conv + biases)
prev_layer=hidden
prev_depth = depth
prev_height =height
#print(prev_depth)
results['conv'+str(i)]=conv
filterr = tf.truncated_normal([8, 8, DEPTH, DEPTH], stddev=0.1)
deconv_shape = tf.pack([tf.shape(prev_layer)[0], SIZE, SIZE, DEPTH])
#print('prev_depth', prev_depth)
#print('prev_layer', tf.shape(prev_layer))
arranged_prev_layer = tf.depth_to_space(prev_layer, 2)
#print('shape',tf.shape(arranged_prev_layer)[0])
conv_transposed = tf.nn.conv2d_transpose(arranged_prev_layer,
filterr,
output_shape=deconv_shape,
strides=[1,4,4,1],
padding='SAME'
)
prev_layer =conv_transposed
W = tf.Variable(tf.random_normal([SIZE, SIZE]))
b = tf.Variable(tf.zeros([SIZE]))
reshaped = tf.reshape(prev_layer, [-1, W.get_shape().as_list()[0]])
mat = tf.matmul(reshaped,W)
output = tf.nn.tanh(mat + b)
decoded = output
reconstructed_x = tf.reshape(decoded, [-1, SIZE,SIZE,DEPTH])
results["decoded"]=reconstructed_x
results["cost"]= tf.sqrt(tf.reduce_mean(tf.square(x-reconstructed_x)))
#results['arranged']= arranged_prev_layer
#results['transposed']= conv_transposed
return results
def get_input():
return tf.placeholder("float", [None, SIZE, SIZE, DEPTH], name='x')
def deep_test():
sess = tf.Session()
x = get_input()
autoencoder = create(x)
#train_step = tf.train.GradientDescentOptimizer(3.0).minimize(autoencoder['cost'])
train_step = tf.train.AdamOptimizer(1e-5).minimize(autoencoder['cost'])
init = tf.initialize_all_variables()
sess.run(init)
saver = tf.train.Saver()
saver.save(sess, 'modelconv.ckpt')
tf.train.write_graph(sess.graph_def, 'log', 'modelcon.pbtxt', False)
#output = irfft(filtered)
i=0
#write('output.wav', rate, output)
for trains in range(TRAIN_REPEAT):
for file in glob.glob('training/*.wav'):
i+=1
learn(file, sess, train_step, x,i, autoencoder, saver)
# given fft, return back a stack 3-dimensional SIZExSIZE squares
def collect_input(data, dims):
slice_size = dims[0]*dims[1]*dims[2]
length = len(data)
# discard extra info
relevant = int(length/slice_size)*slice_size
arr= np.array(data[0:relevant])
reshaped = arr.reshape((-1, SIZE, SIZE, DEPTH))
return reshaped
def learn(filename, sess, train_step, x, k, autoencoder, saver):
print("Loading "+filename)
wavobj = loadfft2(filename)
transformed = wavobj['transformed']
transformed_raw = wavobj['raw']
rate = wavobj['rate']
input_squares = collect_input(transformed, [SIZE, SIZE, DEPTH])
#print(input_squares)
print("Running " + filename + str(np.shape(input_squares)[0]))
sess.run(train_step, feed_dict={x: input_squares})
print(k,filename, " cost", sess.run(autoencoder['cost'], feed_dict={x: input_squares}))
print("Finished " + filename)
#print(i, " original", batch[0])
#print( " decoded", sess.run(autoencoder['conv2'], feed_dict={x: input_squares}))
saver.save(sess, 'modelconv.ckpt')
def deep_gen():
sess = tf.Session()
wavobj = loadfft2('input.wav')
sanity(wavobj)
transformed = wavobj['transformed']
x = get_input()
autoencoder = create(x)
init = tf.initialize_all_variables()
sess.run(init)
saver = tf.train.Saver()
saver.restore(sess, 'modelconv.ckpt')
batch = collect_input(transformed, [SIZE, SIZE, DEPTH])
filtered = np.array([])
decoded = sess.run(autoencoder['decoded'], feed_dict={x: np.array(batch)})
#decoded = sess.run(autoencoder['decoded'], feed_dict={x: np.array(np.random.normal(0,1,[len(batch), 8192]))})
#filtered = np.append(filtered, batch)
filtered = np.append(filtered,decoded.reshape([-1]))
#print(i, " cost", sess.run(autoencoder['cost'], feed_dict={x: batch}))
#print(i, " original", batch[0])
#print( i, " decoded", sess.run(autoencoder['decoded'], feed_dict={x: batch}))
savefft2('output.wav', wavobj, filtered)
if __name__ == '__main__':
if(sys.argv[1] == 'train'):
print("Train")
deep_test()
else:
print("Generate")
deep_gen()